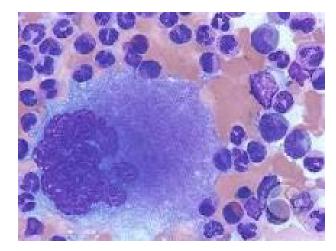
Updates in Diagnosis and Treatment of Myelodysplastic Syndromes

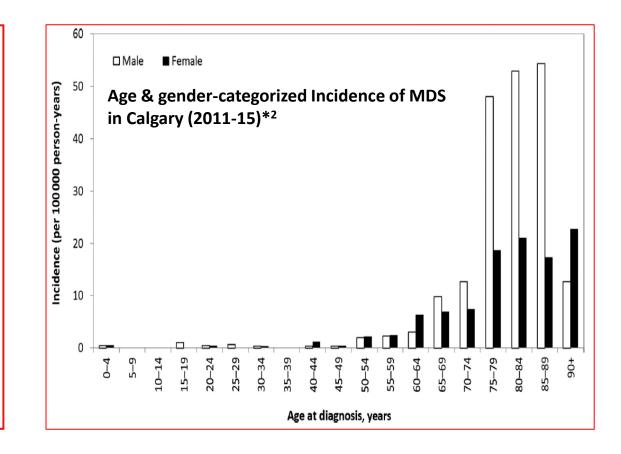

> Aplastic Anemia and MDS Association of Canada Patient and Family Support Group October 14, 2023

Objectives

- Review diagnosis of MDS
- Update ways to evaluate prognosis of disease
- Overview the management of lower risk MDS
- Outline management of higher risk MDS

What are myelodysplastic syndromes?

- A group of bone marrow disorders with the following characteristics:
 - Bone marrow failure
 - symptoms of low blood counts
 - Dysplastic (abnormal) blood cells under the microscope
 - Clonal mutation seen in chromosomes or gene mutations
 - Increased risk of developing acute myeloid leukemia


Normal megakaryocyte (platelet precursor)

ASH image bank

Dysplastic megakaryocyte

MDS in Canada

- MDS is likely under-diagnosed
- Prevalence: ~10,000 40,000 aged ≥65 yrs
- Incidence (new diagnosis): ~3,850 in 2016
- Retrospective cohort study from Calgary Metropolitan Area
- Male to female ratio: ~1.35
 - Median age of diagnosis: ~75 yrs

- 1. Blood Cancer in Canada Facts & Stats 2016,Accessed 29th Dec, 2020, LinK:
- https://www.llscanada.org/sites/default/files/National/CANADA/Pdf/InfoBooklets/Blood_Cancer_in_Canada_Facts_%26_Stats_2016.pdf
 Incidence of Myelodysplastic Syndromes in a Major Canadian Metropolitan Area, Jonathan Slack et al, November 2018 | 03:03 | 378– 383 | JALM 379
- 3. The Population Based Incidence of Myelodysplastic Syndrome (MDS): Utility of Multiple Data Sources and Follow-up, Rajat Kumar et al, Blood (2009) 114 (22): 245
- 4. Estimating the prevalence of myelodysplastic syndromes in patients with unexplained cytopenia: A retrospective study of 322 bone marrows, Rena Buckstein etal, Leukemia Research, Volume 33, Issue 10, October 2009, Pages 1313-1318

What are known risk factors for developing MDS?

Environmental exposures

Professional	Adjusted OR	95% CI	Р
Petrol	2.5	(0.9–7.7)	0.8
Aromatic polycyclic hydrocarbons	1.8	(0.7–4.6)	0.93
Exhaust gases	1.0	(0.5–1.9)	0.27
Dyes	2.3	(0.5–13.9)	0.77
Plastic fumes and dusts	3.5	(0.7–34.5)	0.09
Wood dusts	1.0	(0.3–3.3)	0.71
Pesticides	3.2	(1.1–11.2)	0.21
Fertilizers	2.9	(1·2–8)	0.96
Cereal dust	2.6	(1·2–6)	0.58
Poultry	15	(2·3–631·5)	0.1
Cotton and flax dusts	3.4	(1.6-8.2)	0.013
Radiation	2.25	(1.1 - 4.7)	NR

High risk professionals

Professional	Adjusted OR	95% CI	Р
Agricultural workers	3.66	(1.9–7.0)	0.0001
Textile operators	3.66	(1.7–7.9)	0.001
Health professionals	10.0	(2·1–48·7)	0.004
Living next to an industrial plant	2.45	(1·5–4·1)	0.007
Commercial and technical sales representatives	4·45	(1·4–14·6)	0.013
Smoking	1.74	(1.1-2.7)	0.015
Machine operators	2.69	(1·2–6·0)	0.015
Oil use	1.10	(1.0–1.2)	0.029

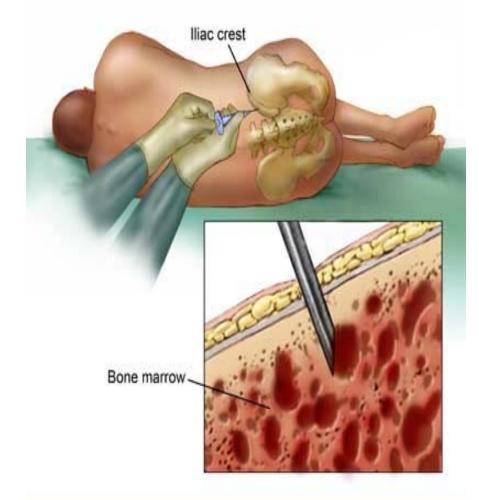
1. Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France, C Nisse et al, Br J Haematol, 2001 Mar;112(4):927-35

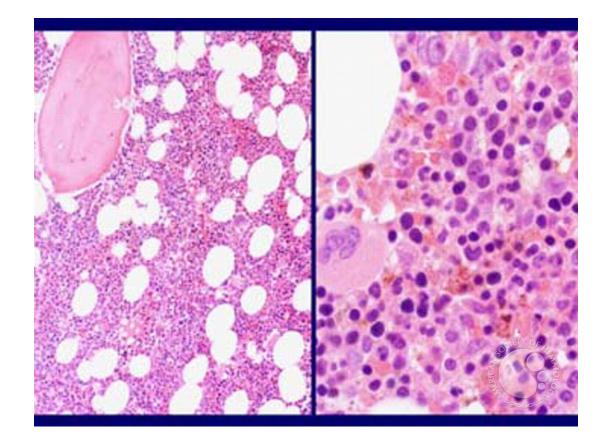
Symptoms of Anemia

- Fatigue
- Shortness of breath, especially with exertion
- Heart racing
- Lightheadedness
- Sometimes angina, especially with exertion
- Heart pounding in ears
- Pale

Symptoms of low platelets

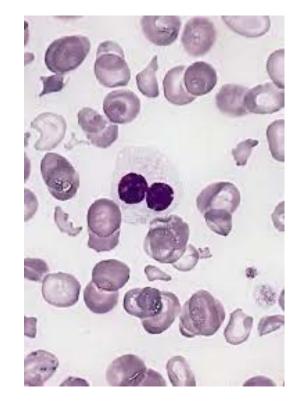
- Easy bruising
- Bleeding from mucous membranes:
 - Nosebleeds
 - Gum bleeding with brushing teeth
 - Hemorrhoids
 - Heavy periods




Symptoms of low white blood cells

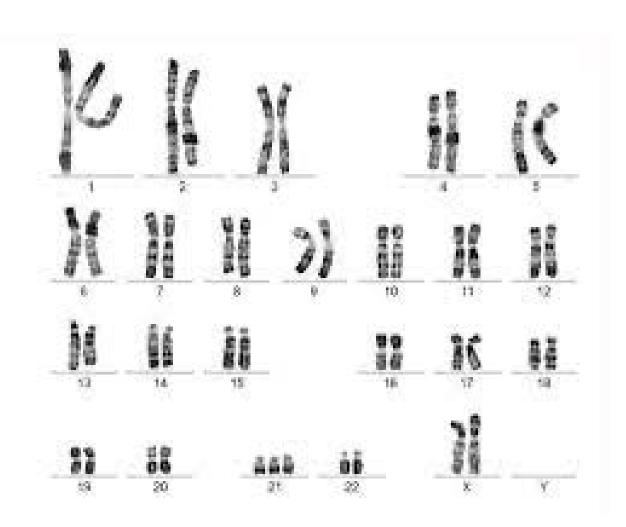
- Infections
 - More frequent
 - Higher risk of becoming more ill with infections

Gold standard test for diagnosis of MDS is a bone marrow biopsy


ASH image bank

What tests can be done on the marrow from a bone marrow biopsy?

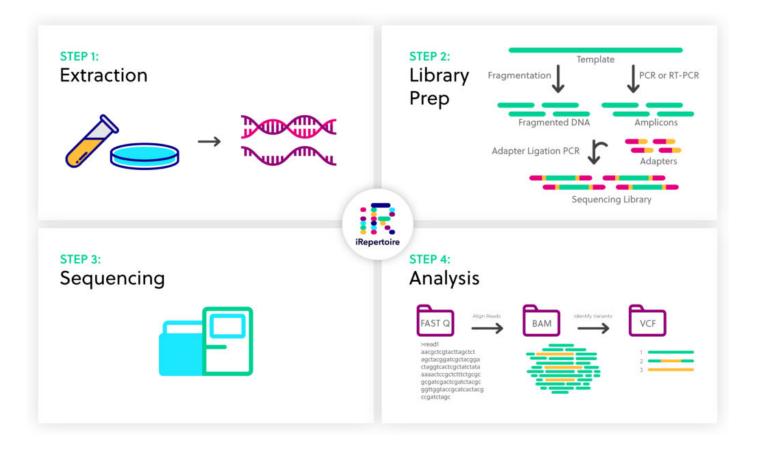
➢ Microscopy


- What do the cells look like?
- Is the marrow empty or full?
- Are there increased numbers of immature blast cells?
 - Normal is less than 5%

- Flow cytometry
 - Looks at patterns of surface markers on the cells

What tests can be done on the marrow from a bone marrow biopsy?

Cytogenetics


Some chromosome abnormalities are enough to make a diagnosis of MDS

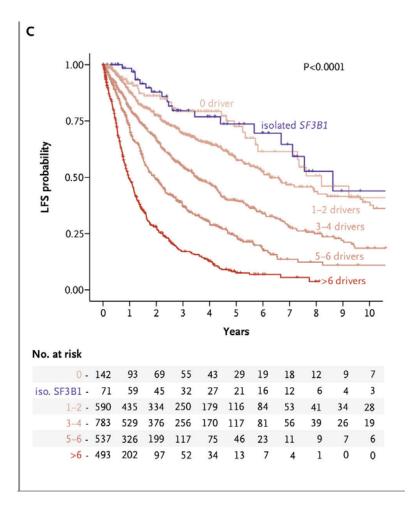
Chromosomal	Frequency		
abnormality	MDS overall	Therapy- related MDS	
Unbalanced			
Gain of chromosome 8 ^a	10%		
Loss of chromosome 7 or del(7q)	10%	50%	
del(5q)	10%	40%	
del(20q) ^a	5-8%		
Loss of Y chromosome ^a	5%		
Isochromosome 17q or t(17p)	3-5%	25-30%	
Loss of chromosome 13 or del(13q)	3%		
del(11q)	3%	1.	
del(12p) or t(12p)	3%		
del(9q)	1–2%		
idic(X)(q13)	1-2%		
Balanced			
t(11;16)(q23.3;p13.3)		3%	
t(3;21)(q26.2;q22.1)		2%	
t(1;3)(p36.3;q21.2)	1%		
t(2;11)(p21;q23.3)	1%		
inv(3)(q21.3q26.2)/ t(3;3)(q21.3;q26.2)	1%		
t(6;9)(p23;q34.1)	1%		
^a As a sole cytogenetic abnu of morphological criteria, g del(20q) and loss of Y chru considered definitive evide ting of persistent cytopeni: the other abnormalities sh considered presumptive e the absence of definitive n	pain of chror omosome all ance of MDS a of undeter own in this t vidence of M	nosome 8, re not 5; in the set- mined origin table are MDS, even in	

In the presence of unexplained cytopenias, these chromosome abnormalities are diagnostic of MDS. Del (20q), +Y and +8 are not diagnostic of MDS.

What tests can be done on the marrow from a bone marrow biopsy?

• Mutations (NGS = next generation sequencing)

MDS is can have many different gene mutations


- DNA damage and evolution of clonal cytogenetic abnormalities
 - Frequent abnormalities in DNA methylation and epigenetics

<mark>RARa</mark>

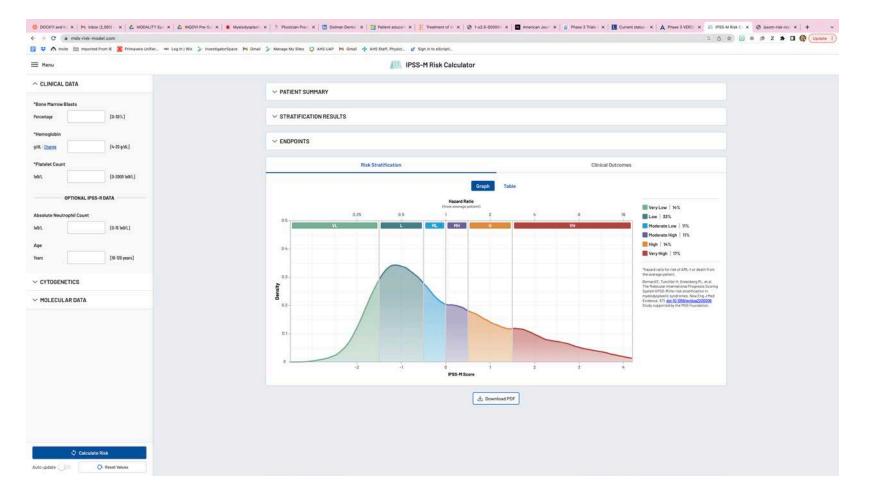
Signalling	Epigenetic	mRNA Splicing	Transcription	Cohesin genes	DNA damage
Jak2 CBL NRAS PTPN11 BRAF GNAS	TET2 DNMT3A IDH1/2 EZH2 ASXL1	SF3B1 SRSF2 U2AF1/2 ZRSR2	RUNX1 ETV6 BCOR CEBPA GATA2	STAG2 SMC1A SMC3 RAD21	TP53

Driver mutations in MDS

89% of patients have a somatic mutation Typical MDS patient has 2-3 mutations

NEJM Evid 2022;1(7)

MDS World Health Organization Classification 2022


- MDS with defining genetic abnormalities ٠
 - MDS with low blasts and isolated 5g deletion (MDS-5g) -
 - MDS with low blasts and SF3B1 mutation (MDS-SF3B1)[‡] —
 - MDS with biallelic TP53 inactivation (MDS-biTP53) _
- MDS, morphologically defined ٠
 - MDS with low blasts (MDS-LB)
 - MDS, hypoplastic[§] (MDS-h) —
 - MDS with increased blasts (MDS-IB)
 - MDS with increased blasts 1 (MDS-IB1) (5-9% BM or 2-4% PB)
 - MDS with increased blasts 2 (MDS-IB2) (10-19% BM or 5-19% PB or Auer rods)
 - MDS with fibrosis (MDS-f) (5-19% BM; 2-19% PB)

*RS < 15% or RS < 5% with SF3B1 mutation; †RS ≥ 15% (or ≥ 5% with SF3B1 mutation); ‡RS ≥ 15% may substitute for SF3B1 mutation; § ≤25% bone marrow cellularity. BM, bone marrow; EB, excess blasts; h, hypoplastic; IB, increased blasts; LB, low blasts; MDS, myelodysplastic syndrome; MLD, multilineage dysplasia; PB, peripheral blasts; RS, ring sideroblast; SLD, single lineage dysplasia; U, unclassifiable; WHO, World Health Organization 1. Arber DA et al. *Blood*. 2016;127:2391-2405. 2. Khoury JD et al. *Leukemia*. 2022;36:1703-1719

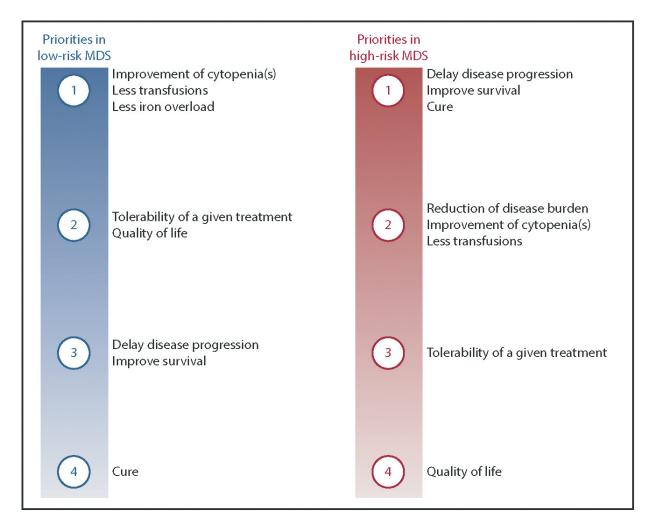
R-IPSS score prognosticates based on blood counts, marrow blast count and cytogenetic risk

Risk Group	Points	% of Patients	Median Survival, Yr	Time Until 25% of Patients Develop AML, Yr
Very low	≤1.5	19%	8.8	Not reached
Low	>1.5-3	38%	5.3	10.8
Intermediate	>3-4.5	20%	3.0	3.2
High	>4.5-6	13%	1.6	1.4
Very High	>6	10%	0.8	0.73

IPSS-M Prognostic scoring system

score =
$$\frac{1}{\log 2} \sum_{\text{variables } j} w_j (x_j - x_j^{\text{mean}})$$
 223

prognostic scoring group compared to the IPSS-R


Valid for therapy-related or secondary MDS that arises out of an underlying bone marrow disorder

Machine Learning may help incorporate MDS molecular risk factors into prognostic scores

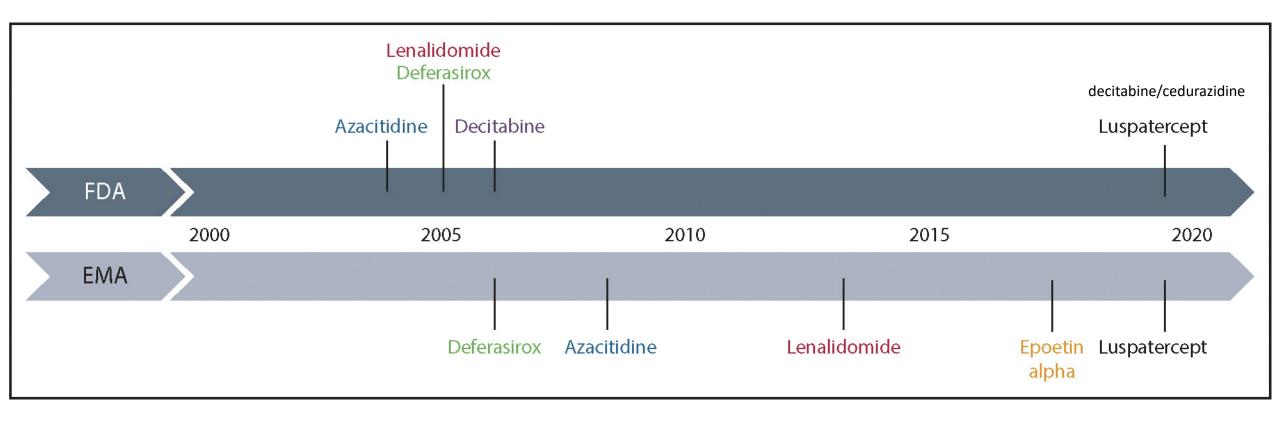
Mitsloan.mit.edu

Goals in care of patients with MDS

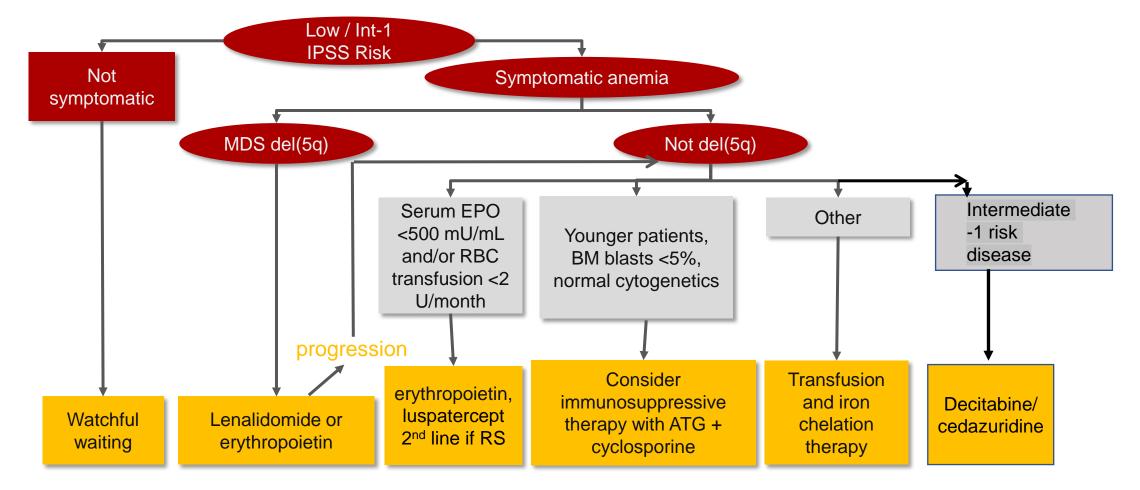
Treatment Options

- Supportive Care
- Transfusions
- Antibiotics
- Iron chelation

- Growth Factors
- Hypomethylating agents
- Lenalidomide
- Immunosuppression
- Chemotherapy
- Bone marrow transplantation


Supportive care

- Goal is to improve quality of life and also survival
 - Antibiotics
 - Transfusions of red cells and platelets
 - Home care support, mobile labs
 - Medications to prevent bleeding
 - Avoid iron supplements unless iron deficient



History of MDS treatments

Recommendations for patients with low / intermediate-1 IPSS risk

Growth factors for red cells

- Erythropoietin or darbopoietin
- Luspatercept

What are erythropoietin and darbopoietin?

- Synthetic version of a hormone the kidney makes to stimulate the bone marrow to make more red cells
- First step for managing anemia in most patients with lower risk MDS.
- No difference between erythropoietin and darbepoietin in effectiveness
 - Weekly injection vs three week injection
- Start with a 8-12 weeks trial, can increase the dose
- Among responders average duration of response 12-18 months.

Predictors of response to ESAs

Prognostic Factor	Score
Serum EPO > 200 mU/mL	1
Serum ferritin > 350 ng/mL	1
IPSS-R	
Very low	0
Low	1
Intermediate	2
High	3

ITACA SCORE BETTER PREDICTS RESPONSE TO ESAs

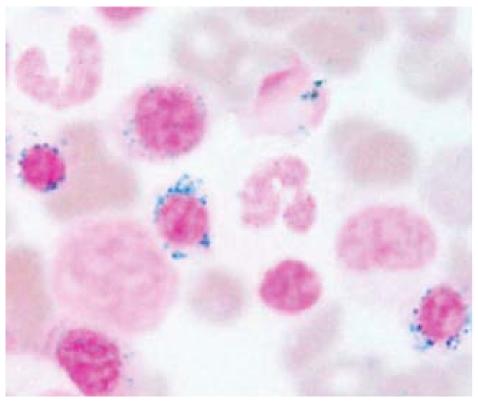
A predictive scoring system of ESA response, ITACA, was developed using 3 large international ESA datasets, including a Canadian database¹

The scoring system takes the following factors into consideration¹:

- RBC transfusion independence (<1 unit/8 weeks x 16 weeks)
- Serum EPO concentration (<100 U/L)
- IPSS low risk

Each covariate was assigned a value of 1 resulting in a scoring system of $0-3^{\rm 1}$

The ITACA score has improved discriminatory capacity for predicting ESA response compared to the Nordic, MDS-CAN and IPSS-R based scoring systems¹

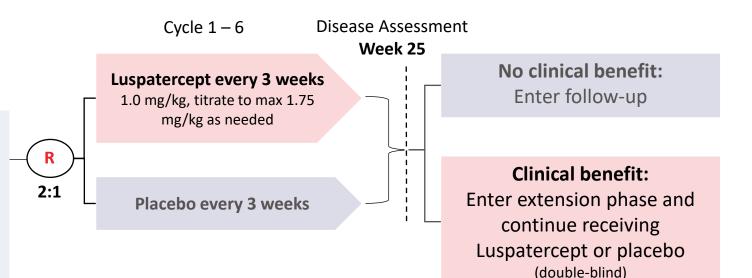

Response rate according to ITACA score in the derivation and validation cohorts¹

	Overall Response Rate (%)		
ITACA Score	Derivation Set (N=345)	Validation Set (N=336)	
0	23%	22%	
1	43%	42%	
2	67%	64%	
3	85%	78%	

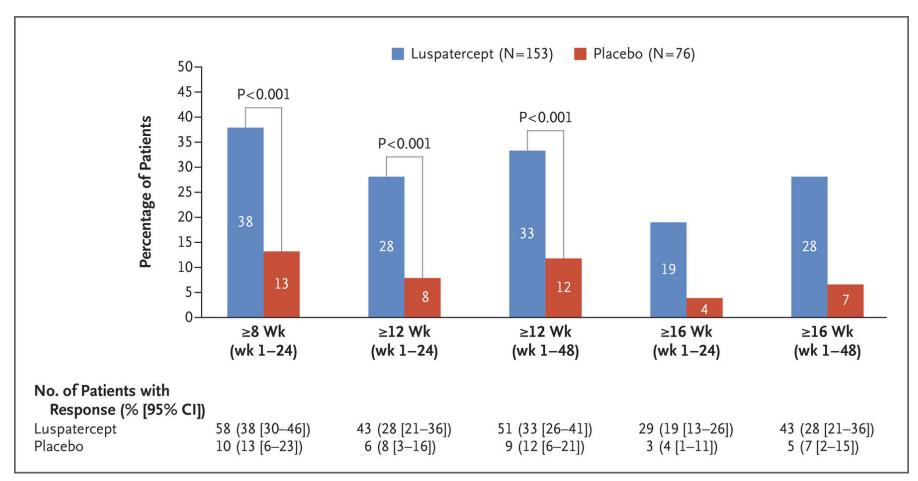
EPO, erythropoietin; ESA, erythropoiesis stimulating agent; IPSS, International Prognostic Scoring System; IPSS-R, International Prognostic Scoring System - Revised; RBC, red blood cell ¹Buckstein R, et al. Am J Hematol. 2017;92(10):1037-1046.

Role of SF3B1 in MDS diagnosis

- SF3B1 is involved in splicing premessenger RNAs (pre-mRNAs) that regulate key pathways in hematopoietic stem and progenitor cells associated with MDS
- Mutations in *SF3B1* are the most commonly associated with MDS, and are more prevalent in low-risk patients
 - >70% of MDS with ringed sideroblast patients have a mutation in *SF3B1*
- *SF3B1* mutations have been shown to be an independent predictor of favourable outcomes for MDS patients


Ring sideroblasts in a bone marrow smear visualized through Perl's reaction. Adapted from Cazzola M, Invernizzi R. Haematologica. 2011;96(6):789-792.

MEDALIST STUDY DESIGN


MEDALIST was a double-blind, randomized, placebo-controlled, phase 3 study

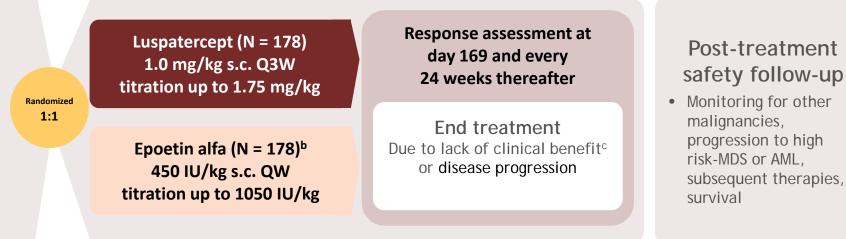
Key Eligibility Criteria:

- Age \geq 18 years
- MDS-RS (WHO): ≥ 15% RS or ≥ 5% with SF3B1 mutation
- < 5% blasts in bone marrow
- No del(5q) MDS
- IPSS-R very low-, low-, or intermediate-risk
- Prior ESA response:
 - Refractory, intolerant
 - ESA naïve: EPO > 200 U/L
- Average RBC transfusion burden ≥2 units/8 weeks
- No prior treatment with disease-modifying agents

Transfusion independence rates luspatercept vs placebo RCT - MEDALIST

- RBC-TI* for ≥8 weeks 38% of patients on luspatercept vs 13% on placebo (p<0.001)
- 62% (36/58) had ≥ 1
 episode of RBC-TI during
 the treatment period
- Median duration of longest period of transfusion independence 30 weeks

Luspatercept in MDS

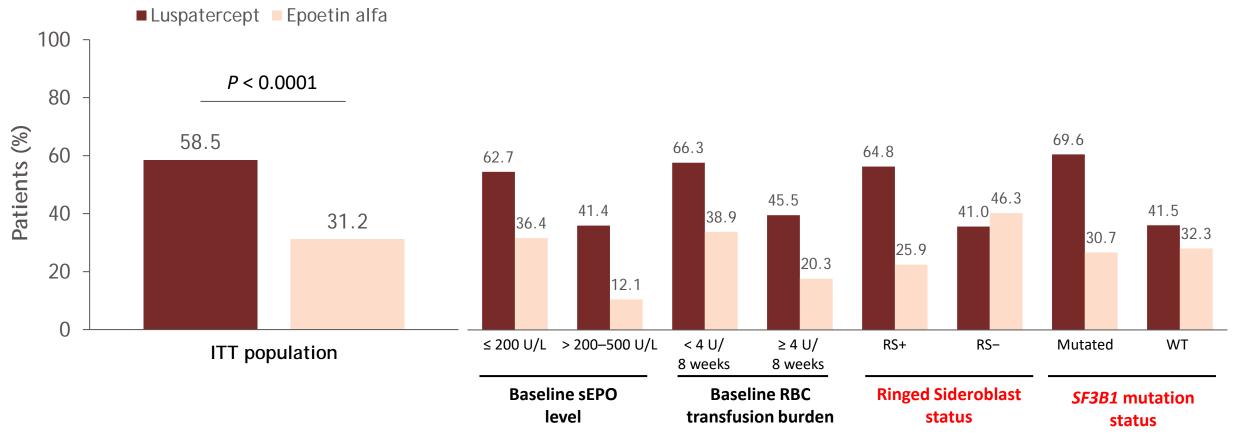

- Luspatercept is approved for transfusion-dependent MDS with very low to intermediate risk (IPSS-R) MDS with ringed sideroblasts who have failed or are unsuitable for erythroid stimulating agents
- Application for Blue Cross Special Authorization required
 - 1 dose luspatercept per prescription from their pharmacy
- Reassessment every 6 months:
 - Red cell transfusion independent over minimum of 16 consecutive weeks over the previous 24 weeks

The COMMANDS study

Phase 3, open-label, randomized trial comparing the efficacy and safety of luspatercept versus epoetin alfa for the treatment of anemia due to IPSS-R lower risk-MDS in ESA-naive patients who require transfusions

Key eligibility criteria

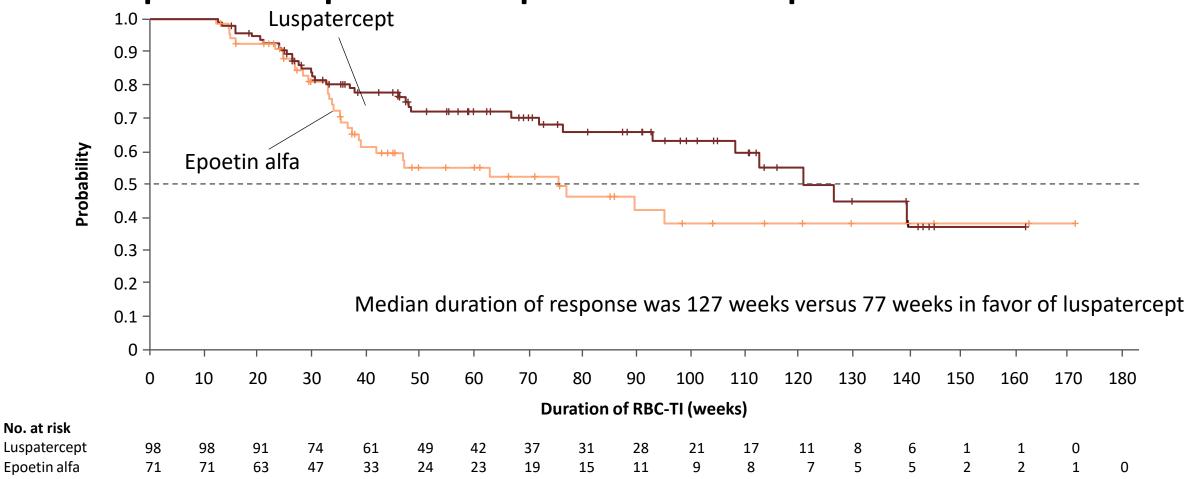
- ≥ 18 years of age
- IPSS-R Very low-, Low-, or Intermediate-risk MDS (with or without RS) by WHO 2016, with < 5% blasts in bone marrow^a
- Required RBC transfusions (2–6 pRBC units/8 weeks for a minimum of 8 weeks immediately prior to randomization)
- Endogenous sEPO < 500 U/L
- ESA-naive


Main endpoints: Transfusion independence and hematologic improvement

^aMDS with del(5q) were excluded; ^b2 patients randomized to the epoetin alfa arm withdrew consent prior to receiving their first dose; ^cClinical benefit defined as transfusion reduction of ≥ 2 pRBC units/8 weeks versus baseline. AML, acute myeloid leukemia; HR, high risk; IPSS-R, Revised International Prognostic Scoring System; IWG, International Working Group; pRBC, packed RBC; QW, once weekly; Q3W, every 3 weeks; RBC, red blood cell; s.c., subcutaneously; sEPO, serum erythropoietin; WHO, World Health Organization. 34

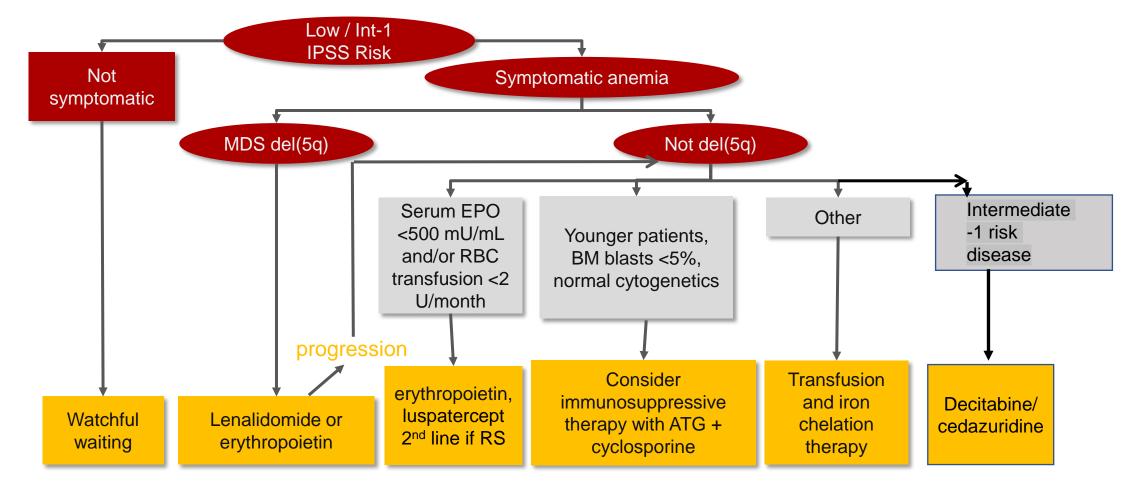
Garcia-Manero G, et al. ASCO 2023 [Abstract #7003]

COMMANDS: achievement of primary endpoint in different patient subgroups


Primary endpoint: red cell transfusion independence ≥ 12 weeks with concurrent mean hemoglobin increase ≥ 1.5 g/dL (weeks 1–24)

RS status, baseline sEPO level, and baseline RBC transfusion burden were prespecified factors for randomization. SF3B1 mutation status was a post hoc subgroup analysis. WT, wild type.

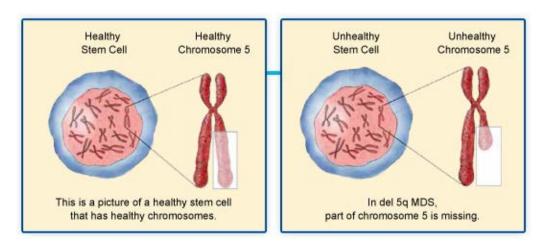
Garcia-Manero G, et al. ASCO 2023 [Abstract #7003]


Transfusion independence ≥ 12 weeks in luspatercept and epoetin alfa patients

During week 1-EOT. CI, confidence interval; HR, hazard ratio; NE, not estimable.

Garcia-Manero G, et al. ASCO 2023 [Abstract #7003]

Recommendations for patients with low / intermediate-1 IPSS risk

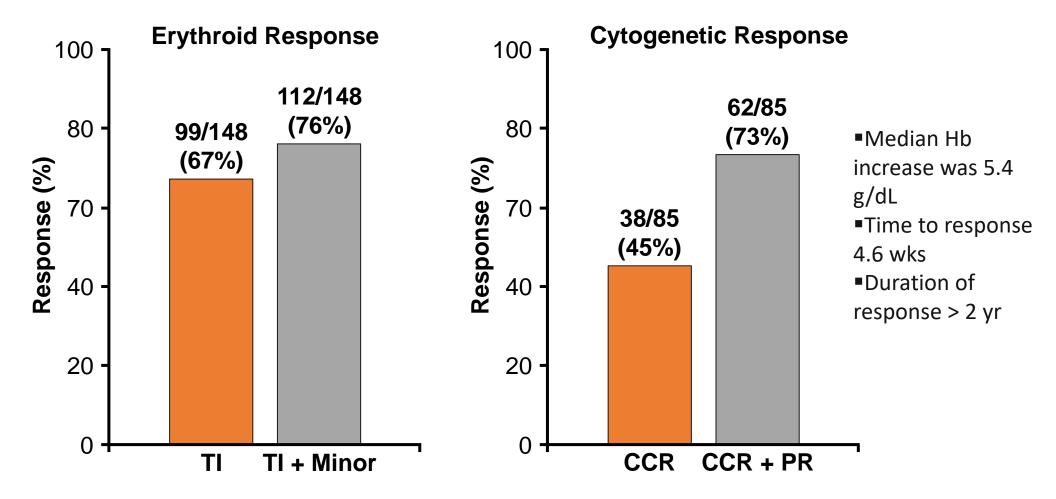


Lenalidomide in patients with del(5q) MDS

• 10-15% of MDS

- Anemia
- Mild low white blood cells
- Atypical megakaryocytes, normal to elevated platelets
- Transfusion dependence
- Normal blast count

Extended survival with low frequency of AML transformation



Lenalidomide: RBC Transfusion Independence in Del(5q) MDS

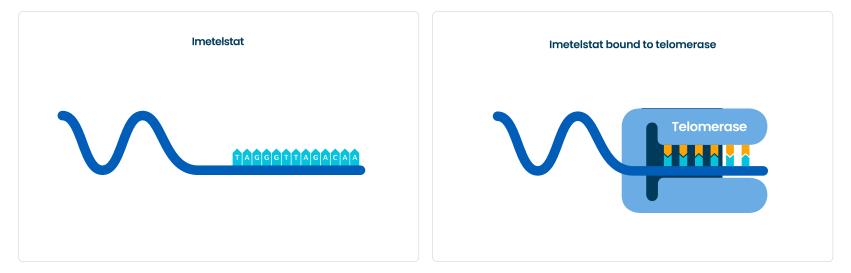
Hemoglobin Response Rate (N=148)	n (%)	95% CI
Transfusion independence*	99 (67)	59–74
≥50% decrease in no. transfusions	13 (9)	5–15
Total transfusion response	112 (76)	68-82
Transfusion Independence	Median	Range
Response Characteristics		
Time to response (wk)	46	1–49
Hgb increase [†] (g/dL)	54	11–114

Can cause lower platelets and white cells, diarrhea, rash

Response to Lenalidomide Therapy

List AF, et al. N Engl J Med. 2006;355:1456-1465

Luspatercept targets late stage red cell production

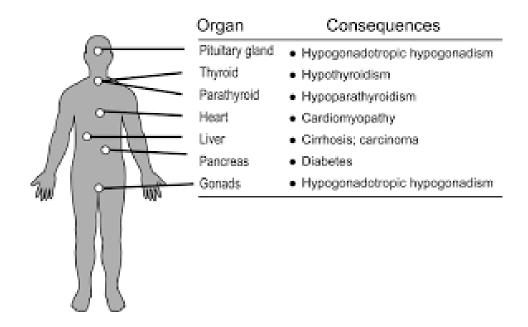

Early-stage erythropoiesis Late-stage erythropoiesis **Erythroid proliferation Erythroid maturation EPO-dependent** Luspatercept Responsive Mveloid Ortho-E BFU-E CFU-E Pro-E Baso-E Polv-E Reticulocyte RBCs HSC Progenitor

Luspatercept is an erythroid maturation agent that binds to select TGF-β superfamily ligands to inhibit aberrant Smad2/3 signalling and enhance late-stage erythropoiesis

Ponka et al. 2014. Erythropoiesis, Hemoglobin Synthesis, and Erythroid Mitochondrial Iron Homeostasis. In: The Handbook of Porphyrin Science, Chapter 129, pp.41-84; Suragani R.N. et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 2014a Apr;20(4):408-14.

Coming?

- Imetelstat is a first in class telomerase inhibitor
- Telomerase are at the end of the DNA strands and get shorter with age
 - Shorter in MDS patients
- Oligonucleotides (short single strands of synthetic DNA or RNA) inhibit the activity of telomerase, an enzyme that helps maintain telomeres and enables the continued proliferation of malignant cells


Garcia-Manero G, et al. ASCO 2023 [Abstract #7003]

Phase 3 IMerge: imetelstat vs supportive care in transfusion dependent MDS R/R or ineligible for ESAs

	Measure, n (%)	Imetelstat N=118	Placebo N=60	Pa
	8-wk Tl	47 (39.8)	9 (15.0)	<0.001
^a Cochrar	n Mantel Haenszel test stratified by prior trans TI duration, median wks (95% CI) ^b	sfusion burden and IPSS; ^b 8-wk TI, Kaplan- 51.6 (26.9–83.9)	Meier estimate; ^c 2018 IWG; ^d Stratified log-ranl 13.3 (8.0–24.9)	< test. <0.001 ^d
	24-wk TI	33 (28.0)	2 (3.3)	<0.001
	HI-E ^c	50 (42.4)	8 (13.3)	<0.001

Iron chelation

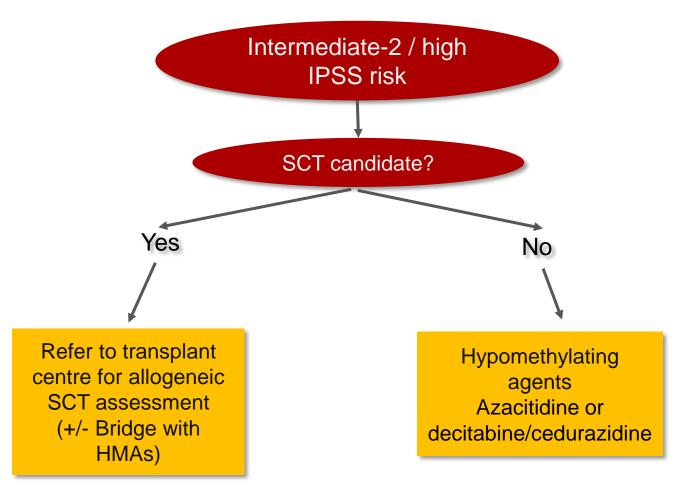
- Blood transfusions contain iron that can deposit over time in organs including heart and liver
- Increases risk of cardiac heart rhythm abnormalities and heart failure
- Elevation of liver enzymes

BENEFIT OF IRON CHELATION THERAPY

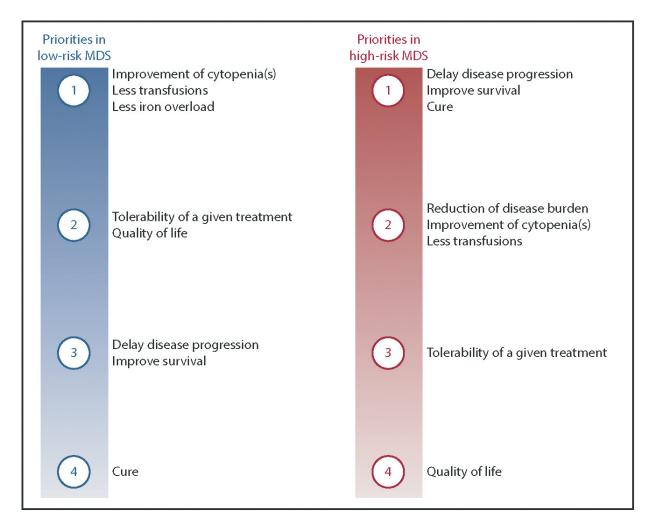
Chelation can reverse some of the consequences of iron overload in MDS patients^{1,2}

• By reducing serum ferritin and organ iron concentrations, it can potentially reduce morbidity

Data from a registry of lower-risk Canadian MDS patients showed an improvement in median overall survival in patients who received ICT compared to non-chelated patients³


 This is supported by the results of additional studies that have shown a survival benefit of ICT in MDS patients⁴⁻⁷

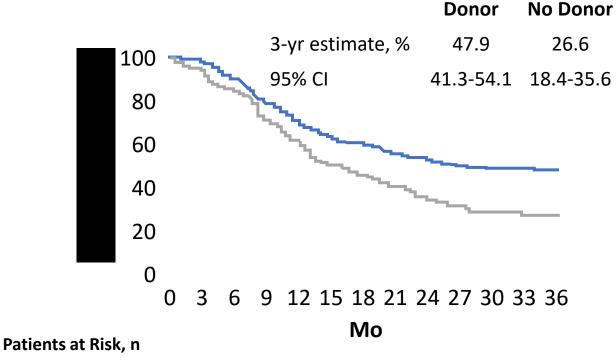
Further information on can be accessed here: <u>http://www.mdsironroad.org</u> (UN: ironroad; PW: makeirongreatagain) and here: <u>http://www.mdsclearpath.org</u>


ICT, iron chelation therapy; MDS, myelodysplastic syndromes; PW, password; UN, username

¹Wells RA, et al. Leukemia Research. 2008;32:1338-1352. ²Murray C, et al. Canadian Oncology Nursing Journal. 2016;26:19-28. ³Leitch HA, et al. British Journal of Haematology. 2017;179:83-97. ⁴Neukirchen J, et al. Leukemia Research. 2012;36:1067-1070. ⁵Leitch HA, et al. Clinical Leukemia. 2008;2:205-211. ⁶Rose C, et al. Leukemia Research. 2010;34:864-870. ⁷Raptis A, et al. Transfusion. 2010;50:190-199.

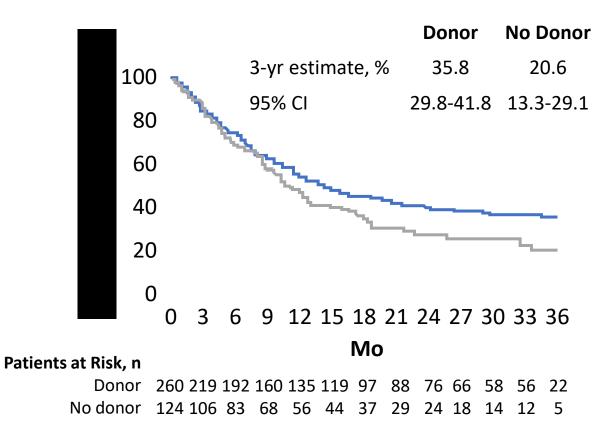
Recommendations for patients with intermediate-2 / high IPSS risk

Goals in care of patients with MDS

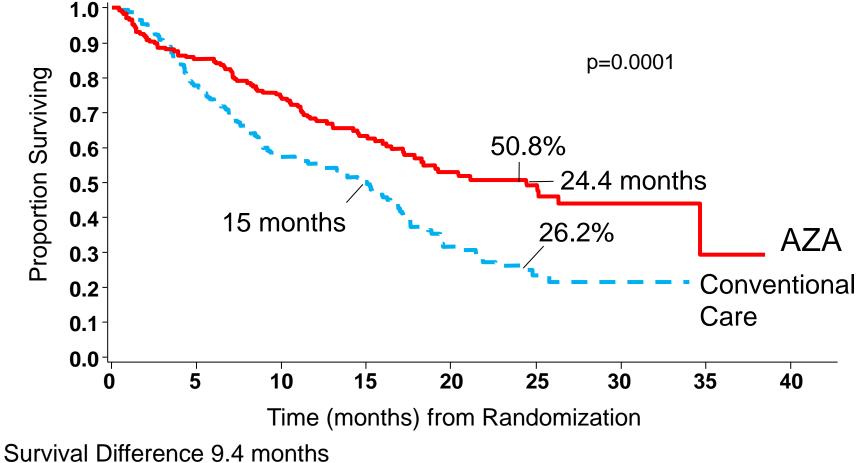


Between a rock and a hard place

Transplantation is currently the only curative therapy for myelodysplastic syndromes

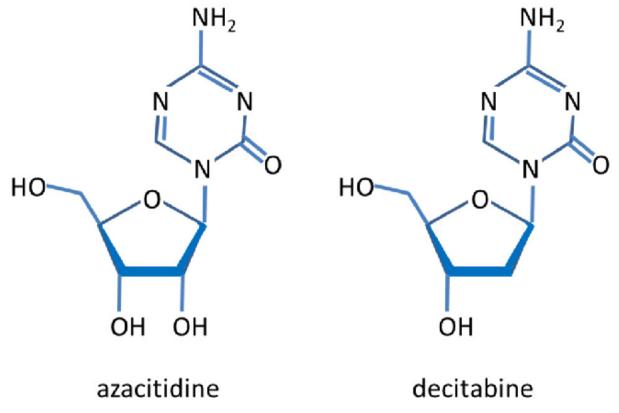


Median age at diagnosis is 65-70 Toxicity of transplantation can be prohibitive BMT CTN 1102: Reduced intensity conditioning plus Allotransplant vs Best nontransplant care in Older Patients (50-75y) With Higher-Risk MDS



Donor260 253 233 201 176 155 129 117 102 86767227No donor124 116 103 8471564940302215147

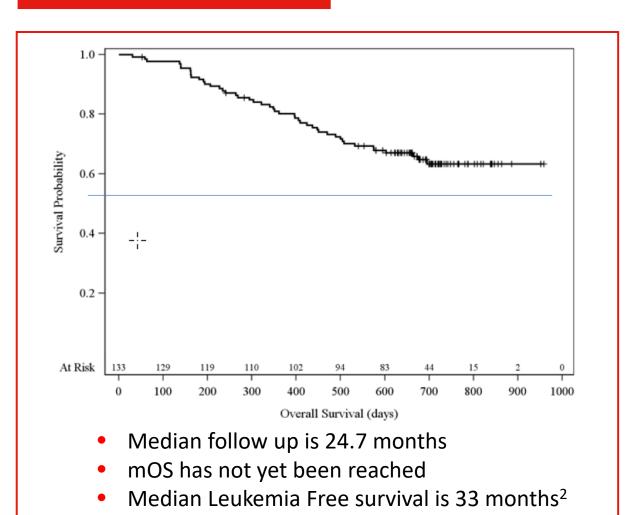
Biological randomization, N=384


Overall Survival: Azacitidine vs Conventional Care Regimen – AZA001

HR = 0.58 [95% CI: 0.43, 0.77] Deaths: AZA = 82, Conventional Care = 113

Lancet Oncol 2009; 10:223-32.

Decitabine and azacytidine are hypomethylating agents


- Azacitidine is metabolized intracellular into decitabine
- Azacitidine is administered SC or IV with short half life
 - peak plasma concentration at 41 minutes after SC administration
- Decitabine is administered IV with similar half life 37-47 min
- Oral version with cedurazidine

Cancer Drug Resistance 2019; (2) 271-296 .<u>Oncologist</u>. 2013 May; 18(5): 619–624

Phase - 3 Results for oral decitabine cedurazidine

Phase 3 Response rates:				
Efficacy Endpoints	Phase 3 Overall (N=133)			
Efficacy Endpoints	n (%)	95% Cl		
Complete Response (CR)	29 (22)	(15.1, 29.8)		
Partial response (PR)	0			
Marrow CR (mCR)	43 (32.3)			
Marrow CR (mCR) with Hematologic Improvement	22 (16.5)			
Hematological Improvement (HI) %	10 (7.5)			
Overall Response (OR = CR + PR + mCR + HI) n (%)	82 (61.7)	(52.8, 69.9)		
RBC transfusion independence n (%)	27/53 (51)			
Platelet transfusion independence n (%)	6/12 (50)			
Median CR duration	14.0 months			
Median duration of best response	12.7 months			
34 (26%) of the 133 patients went on to stem cell transplantation following treatment.				

Phase 3 Overall Survival (OS):

1. Michael R. Savona et al, 62nd ASH Annual Meeting, Dec 5-8, 2020, Abstract 1230

2. Data on file

Oral decitabine/cedazuridine (DEC/C)

- Fixed dose oral tablet approved for MDS with excess blasts, CMML, Int-1 and Int-2 or high risk IPSS subtypes
- Patients may be initiated on either hypomethylating agent (azacitidine or DEC/C)
- Initiate at 5 tabs/28 days and continue until maximal response
 - Median marrow response at 2.2 months
 - Suggest bone marrow aspirate and biopsy at 4 months to assess disease response and marrow cellularity. May need dose delay/ dose reduction if cytopenias in the context of marrow response.

Switching from subcutaneous azacitidine to oral decitabine cedurazidine

- If switching patients in remission from parenteral azacitidine to oral DEC/C, we consider dose reduction to minimize low blood counts especially in the following patient populations:
 - Older or other medical conditions
 - Patients with low blood counts already on azacitidine (ie neutrophils <1 x 10(9) or platelets <30
 - Patients who have already needed dose delays or dose reductions to azacitidine (ie every 5 or 6 weeks) for low blood counts
 - Less cellular marrow due to long term therapy with azacitidine or underlying disease

Unmet needs in care of patients in Canada

- Management of overlap syndromes (myelodysplastic syndromes and myeloproliferative neoplasms
- Options for treatment of relapsed MDS
- Targeted therapy for TP53 mutated MDS
- Improving outcomes for MDS
 - Phase 3 trial imetelstat for lower risk MDS
 - Phase 3 VERONA trial with azacitidine and venetoclax (14d) for MDS
- Many others in pipeline

Clinical trials are investigating new types of treatments

Other supports available

- Home care
- Wellspring
- AAMAC
- Leukemia and lymphoma society
- Psychosocial services
- Dieticians
- Social work, home care, mobile lab

Thank you!

Our patients are why we are here Caregivers are a huge part of treatment success Registry has been increasing knowledge of disease Clinical trials are teaching us more

Questions?

