AAMAC meeting Vancouver April, 2023

Transfusional Iron Overload in

MDS

Heather A. Leitch, MD, PhD St. Paul's Hospital, University of British Columbia Vancouver, BC

Disclosures

Relevant Financial Relationship(s):

Honoraria, advisory boards, research funding: AbbVie, Alexion, Astra Zeneca, BMS, Celgene, Janssen, Novartis, Taiho

> Off Label Usage: Nothing to Disclose

Objectives:

- Measurements of iron overload
- Why address iron overload in MDS
- Relevant targets of iron reduction in MDS
- Summary/conclusions

Objectives:

• Measurements of iron overload

- Why address iron overload in MDS
- Relevant targets of iron reduction in MDS
- Summary/conclusions

	Diagnostic tool	Characteristics	Advantages	Disadvantages
	 Calculation of transfusion iron burden 	Provide a direct quantitative estimate of	Easy to calculate, inexpensive	Unreliable in patients with bleeding or
		the body iron burden		chelation therapy
	Serum ferritin level	Indirect serologic estimation of body iron	Widely available; easy to perform; low-	Unreliable in patients with inflammation,
		burden	cost; repeatable	liver function deficiency, and ascorbate
				deficiency
	 Serum transferrin saturation 	High sensitivity and specificity in	Widely available; easy to perform; low-	No quantitative correlation to iron
		untransfused patients	cost; repeatable	burden
Γ	SQUID	Direct instrumental estimation of hepatic	Noninvasive, repeatable	Expensive; not widely available; not
		iron concentration		validated; significant underestimation;
				not applicable to the heart
-	MRI R2	Indirect instrumental estimation of tissue	Noninvasive, repeatable; validated in the	Expensive, not widely available; reliable
		iron concentration	liver	up to LIC of 15mg/g DW; not applicable
				for cardiac assessment
L	MRI T2*	Indirect instrumental estimation of tissue	Noninvasive; repeatable; validated in the	Expensive, not widely available; complex,
		iron concentration	heart; provides cardiac functional	requires skilled radiologist
			information	
	Liver biopsy	Provides a direct estimation of iron	Validated and quantitative method to	Invasive (cannot be employed in many
		overload	estimate hepatic iron concentration (gold	patients with hematologic malignancies)
			standard)	
	Non-transferrin bound iron (NTBI)/labile	Research tool at present	Noninvasive method; estimates	Not validated and not widely available.
	plasma iron (LPI)		generation of the toxic iron fraction	Not currently useful in clinical practice
	Serum hepcidin level	Research tool at present	Noninvasive method that identifies	Not widely available. Not currently
			patients at high risk of iron loading	useful in clinical practice

Currently available measures of iron overload in clinical practice.

Modified from Alessandrino EP et al; Am J Hematol. 2011;86(10):897-902; Leitch HA et al; Crit Rev Oncol Hematol 2017;113:156-170 & Leitch HA et al; Leuk Res. 2018 Nov;74:21-41.

Therapeutic Objectives for MDS Patients

Treatment goals	Lower risk	Higher Risk
Hematologic improvement/Reduce RBC transfusion requirements	\checkmark	\checkmark
Improve quality of life	\checkmark	\checkmark
Extend overall survival and delay AML progression	?	\checkmark
Alter disease's natural history	?	\checkmark

Treatment options for MDS

Therapeutic options are determined by risk score

	Treatment	Comment
	Lower risk MDS	
•	ESAs ^{1–3}	Most effective in patients with low serum erythropoietin (EPO) level and low transfusion burden
	Lenalidomide ^{1,4}	Transfusion-dependent patients with LR-MDS and del(5q) after ESA failure
	IST ²	For patients with features indicating a high probability of response to IST
	HMAs ²	May be a second-line option for selected cytopenic LR patients in some jurisdictions
	Supportive care ²	RBC transfusions (+ iron chelation)*, platelet transfusions, growth factors
	Luspatercept	For MDS-RS
	Investigational agents	
	Stem cell transplantation	
	Higher risk MDS	
	HMAs <u>+</u> other	Venetoclax, investigational agents
	Supportive care	
	Stem cell transplantation	
	*Management of iron overload should be a consideration in	all treatment groups EPO: epoetin; HMAs: hypomethylating agents; IST: immunosuppressive therapy

1. Fenaux P, et al. Br J Haematol 2019. doi: 10.1111/bjh.16206. Epub ahead of print; 2. Raj K, et al. Postgraduate Haematology. John Wiley & Sons, Ltd., 2016. p.438-73; 3. Hellstrom-Lindberg, E. 2008. Myelodysplastic Syndromes. 1st ed. Remedica. London; 4. Fenaux P, et al. Blood 2011;118:3765–76.

7

Transfusion dependency in LR-MDS is associated with inferior OS

EUMDS: European LeukemiaNet MDS Registry; PFS: progression-free survival; pRBC: packed red blood cells 1. Malcovati L, et al. Haematologica 2006;91:1588-90; 2. de Swart L, et al. Haematologica 2019;104. Epub ahead of print

Iron accumulation from transfusion therapy

Oxidative stress

Hematop

Infections

AML progression

Moderate transfusion requirement:

Organ endpoints

- 2 units/month
- ~ 100 units/4 years
- 100 units: ≥ 20g iron
- Iron is deposited in tissues & organs & causes toxicity
- Recent data from the EUMDS show that even receiving 0.87U/month is associated with inferior outcomes¹

Event-free survival

EUMDS, European LeukemiaNet MDS Registry; mg, milligrams; g, grams; U, units. de Swart L, et al. 2019 Haematologica; doi 10.3324/haematol.2018.212217.

HR MDS

Overall survi

Impact of Transfusions (?iron?) on Prognosis (Cont'd)

- de Swart et al. demonstrated that RBC transfusion dose density (units per month) is inversely correlated with PFS¹
- The negative effect on PFS occurs even at transfusion densities below 1 units/month¹
- MDS-related causes of death increased from 28% in the non-transfused group to 39% and 48% in patients with mid and high transfusion burden¹

*Low dose defined as >0 to <0.75 units per month, mid dose defined as 0.75 – 1.75 units per month, high dose defined as >1.75 units per month PFS, progression-free survival; RBC, red blood cell ¹de Swart, et al. Haematologica. 2020;105(3):632-639.

Progression-free survival stratified by transfusion densities^{1*}

Transfusion Iron Burden

- Guidelines recommend starting iron chelation once a patient has received >20U or >50U RBC (generally with a ferritin >1000 or >2500)¹⁻⁹
- However, these numbers are extrapolated from the experience with beta thalassemia major in the era of deferoxamine
- Data are needed to determine the best transfusion burden to start iron chelation
- Given that achievable chelator dose may be limited by side effects

¹Alessandrino EP, et al. Haematologica 2002;87(12):1286-306. ²Bowen D et al.. Br J Haematol 2003;120(2):187-200. ³Gattermann N, et al. Hematol Oncol Clin North Am 2005;19(Suppl 1):18-25. ⁴Suzuki T, et al. Int J Hematol 2008;88(1):30-5. ⁵Valent P, et al. Eur J Clin Invest 2008;38(3):143-9. ⁶Greenberg PL, et al. J Natl Compr Canc Netw 2006;4(1):58-77. ⁷Mittelman M, et al. Isr Med Assoc J 2008;10(5):374-6. ⁸Wells RA, et al. Leuk Res 2008;32(9):1338-53. ⁹Leitch HA et al. Leuk Res. 2018 Nov;74:21-41.

Measurements of Organ Iron

- Liver biopsy is rarely done in patients with MDS due to neutropenia, thrombocytopenia and risk of infection and bleeding
- Preclinical and clinical data show that organ iron can be offloaded using chelation, with improvement in liver function tests^{1,2}
- Imaging Clinical data indicating a benefit of iron reduction in the organs are inconsistent in the SCT setting

¹Vlachodimitropoulou E, et al.Blood. 2017 Oct 26;130(17):1923-33. ²Gattermann N, et al. Haematologica. 2012 June 2012;97(1):138, Abstract 344.

Serum ferritin

- The vast majority of data in MDS address serum ferritin level
- Most data are retrospective and examine overall survival
- Other endpoints examined include:
 - organ events (cardiac, hepatic)
 - infection risk
 - -hematologic improvement
 - -outcomes in higher risk MDS
 - -clinical endpoints around SCT

Overall survival of transfusion-dependent patients by serum ferritin level

RA = refractory anaemia; RARS = RA with ringed sideroblasts; RCMD = refractory cytopenia with multilineage dysplasia; RCMD-RS = RCMD with ringed sideroblasts.

Malcovati L, et al. Haematologica. 2006;91:1588-90

Levels of evidence and grades of recommendations

- Levels of evidence:
 - -I, randomized controlled trials;
 - -II-1, controlled, non-randomized trials;
 - -II-2, cohort studies, preferably from more than one center;
 - -II-3, comparison to historical controls, dramatic results of uncontrolled studies;
 - -III, expert opinion.
- Grading of recommendations:
 - -A, based on good evidence;
 - -B, fair evidence; and
 - -C, conflicting evidence

Canadian Task Force on Preventive Health Care, e-Appendix 1: definitions of levels of evidence and grades of recommendations of the Canadian Task Force on Preventive Health Care, Can. Med. Assoc. J. (2004) [cited 2018 April 29]; Available from: http://www.cmaj.ca/content/suppl/2004/03/15/170.6.976.

Clir	nical endpoints considered ¹	Evidence level	Recommendation grade
IOL	in MDS may contribute to:		
•	Organ dysfunction (cardiac, hepatic)	II-2	NA
•	Infections	11-2	NA
•	Marrow failure	NA	NA
•	Decreased overall survival	11-2	NA
•	AML progression	11-2	NA
•	Clinical endpoints around SCT ²	11-2	NA
Iror	n chelation therapy may improve:		
•	Organ dysfunction	II-3	В
•	Infection risk	11-2	В
•	Effective hematopoiesis	11-2	А
•	Overall Survival	11-2	С
•	Outcomes in higher risk MDS	III	В
•	Clinical endpoints around SCT	11-2	В

<u>Relevant clinical endpoints around iron overload and iron chelation therapy in MDS.</u>

¹in lower risk MDS except where specified ²for hematologic malignancies including MDS AML, acute myeloid leukemia; ICT, iron chelation therapy; IOL, iron overload; MDS, myelodysplastic syndrome; NA, not applicable; SCT, hematopoietic stem cell transplantation. Levels of evidence: I, randomized controlled trials; II-1, controlled, non-randomized trials; II-2, cohort studies, preferably from more than one center; II-3, comparison to historical controls, dramatic results of uncontrolled studies; and III, expert opinion. Grading of recommendations: A, based on good evidence; B, fair evidence; and C, conflicting evidence (reference [25]).

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Studies examining IOL & organ endpoints in TD IPSS LR MDS (cardiac, hepatic, endocrine)

Study	Ν	IOL measure	Endpoint	Findings
Schaefer 1981	15	Median RBCU 120	organs	Elevated LFTs (87%), portal fibrosis (66%),
				Cardiomegaly (50%), CHF (27%), arrhythmias (53%),
				abnormal GTT (100%)
Jaeger 1992	46	Median RBCU 79	organs	Elevated LFTs (24%)
				Cardiac siderosis (43%), CHF deaths (30%), arrhythmias (22%)
				DM (11%)
Cazzola 1988	26	Median RBCU 64	organs	Elevated LFTs (69%)
				CHF (31%)
				Impaired GTT/DM (77%)
Takatoku 2007	152	Median RBCU ≈100	organs	Elevated LFTs (90%), hepatic failure (7%)1
				CHF (24%) ¹
Ferte 2006	21	Median RBCU 81	heart	Cardiomegaly (43%), CHF 966%)

¹present at death CHF, congestive heart failure; DP, disease progression; GTT, glucose tolerance test; HR, hazard ratio; IOL, iron overload; IPSS-R; International Prognostic Scoring System-Revised; LFT, liver function tests (transaminases); n, number; p, probability; RBCU, red blood cell units; SF, serum ferritin; TD, transfusion dependent; TI, transfusion independent. Modified from Wells RA et al. Leuk Res 2008 Sep;32(9):1338-53. Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Cardiac disease is a leading cause of non-leukaemic death in MDS patients

AML, acute myeloid leukaemia; CVA, cerebrovascular accident;

Prevalence of comorbidities in transfusion-dependent MDS: Cardiac

dyspnoea, and hepatic and infectious diseases than non-transfused MDS patients

Goldberg SL, et al. J Clin Oncol. 2010;28:2847-52.

CLOSE X

Cardiac events in transfused lower IPSS risk MDS

- Cardiac events included clinical episodes of CAD, CHF & ARR¹
- Median TTCE was 7 & 20 months for ICT & non-ICT patients¹
- In MVA, receiving ICT remained significant for TTCE (p=0.03)¹
- For a detailed discussion of the contribution of IOL to atherosclerosis, see Vinchi et al (2014)²

Figure Delayed time from RBC transfusion dependence to first cardiac event in lower IPSS risk MDS patients receiving iron chelation therapy

Wong CAC & Leitch HA. Leuk Res. 2019 Aug;83:106170.

ARR, anythmia; CAD, coronary artery disease; CHF, congestive heart failure; ICT, iron chelation therapy; MVA, multivariate analysis; TD, transfusion dependence; TTCE, time to cardiac event. ¹Wong CAC & Leitch HA. Leuk Res. 2019;83:106170. ²Vinchi F, et al. Front Pharmacol. 2014;5:1-20.

MDS pooled analysis: Deferasirox reduces iron overload & improves liver function

EPIC, US02, Studies 108 & 2204

Mean LIC baseline to EOS

- Proportion of patients with LIC ≥7 mg Fe/g dw reduced from 78.9% at baseline to 59.2% at EOS
- Among patients with baseline LIC ≥7 mg Fe/g dw, 58.9% achieved an LIC decrease of ≥30%
- · Most patients had elevated baseline SF:
 - ≤2500 ng/mL 48.4%
 - >2500 -≤5000 ng/mL 35.5%
 - >5000 ng/mL 16.1%

Mean ALT baseline to EOS

 Patients with baseline LIC ≥7 mg Fe/g dw: 32.1% normal ALT at baseline vs 71.4% at EOS

Gattermann N, et al. Haematologica. 2012 June 2012;97(1):138, Abstract 344.

Prevalence of comorbidities in transfusion-dependent MDS: Endocrine

Goldberg SL, et al. J Clin Oncol. 2010;28:2847-52.

Clir	nical endpoints considered ¹	Evidence level	Recommendation grade
IOL	in MDS may contribute to:		
•	Organ dysfunction (cardiac, hepatic)	II-2	NA
•	Infections	II-2	NA
•	Marrow failure	NA	NA
•	Decreased overall survival	II-2	NA
•	AML progression	II-2	NA
•	Clinical endpoints around SCT ²	II-2	NA
Iror	n chelation therapy may improve:		
•	Organ dysfunction	II-3	В
•	Infection risk	II-2	В
•	Effective hematopoiesis	II-2	А
•	Overall Survival	II-2	С
•	Outcomes in higher risk MDS	III	В
•	Clinical endpoints around SCT	II-2	В

<u>Relevant clinical endpoints around iron overload and iron chelation therapy in MDS.</u>

¹in lower risk MDS except where specified ²for hematologic malignancies including MDS AML, acute myeloid leukemia; ICT, iron chelation therapy; IOL, iron overload; MDS, myelodysplastic syndrome; NA, not applicable; SCT, hematopoietic stem cell transplantation. Levels of evidence: I, randomized controlled trials; II-1, controlled, non-randomized trials; II-2, cohort studies, preferably from more than one center; II-3, comparison to historical controls, dramatic results of uncontrolled studies; and III, expert opinion. Grading of recommendations: A, based on good evidence; B, fair evidence; and C, conflicting evidence (reference [25]).

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Iron overload may increase infections in MDS – preclinical:

- An iron rich environment enhances the growth of microorganisms.
 - Yersinia is a recognized cause of infection in transfused patients¹.
- NTBI augmented the growth of Staphylococcus aureus in the serum of hemodialysis patients receiving iv iron².
- HFE-deficient mice had increased susceptibility to Mycobacterium avium³.
- IOL can lead to functional impairment of neutrophils, macrophages & NK cells, including phagocytic capacity⁴⁻⁸.

¹Cantinieaux B, et al. J Lab Clin Med. 1988;111(5):524-8. ²Barton Pai A, Am J Nephrol. 2006;26(3):304-9. ³Gomes-Pereira S, et al. Infect Immun. 2008;76(10):4713-9. ⁴Cantinieaux B, et al. Eur J Haematol 1987;39(1):28-34. ⁵Cantinieaux B, et al. J Lab Clin Med.1999;133(4):353-61. ⁶van Asbeck BS, et al. J Immunol.1984;132(2):851-6. ⁷van Asbeck BS, et al. J Infect. 1984;8(3):232-40. ⁸Nairz M, et al. Front Pharmacol. 2014;5:152.

Iron overload may increase infections in MDS – clinical:

- In NTDT patients, a risk factor for severe bacterial infections (sepsis, meningitis, organ abscess) was SF >1000ng/mL¹.
- Several studies in HSCT for hematologic malignancies identify IOL (elevated pre-SCT SF, hepcidin level, or LIC) as a risk factor for significant infections (bloodstream infections, infectious deaths, bacterial infections, invasive mold infections, severe infections)²⁻¹⁶.
- A US Medicare Registry analysis indicated that MDS patients who were TD had a higher rate of infections than those who were TI (81 vs 55.7%, p<0.001)¹⁷.
- In MDS, though factors such as neutropenia and pre-existing neutrophil dysfunction must be taken into account as contributing to infection risk, the data suggest that IOL may increase infectious risk.

¹Teawtrakul N, et al.. Int J Infect Dis. 2015;39:53-6. ²Platzbecker U, et al. Biol Blood Marrow Transplant. 2008;14(11):1217-25. ³Kataoka K, et al. Biol Blood Marrow Transplant. 2009;15(2):195-204. ⁴Sivgin S, et al. Neoplasma. 2012;59(2):183-90. ⁵Tachibana T, et al. Int J Hematol. 2011;93(3):368-74. ⁶Altes A, et al. Bone Marrow Transplant. 2004;34(6):505-9. ⁷Garcia-Vidal C, et al. Clin Infect Disease:
2008;47(8):1041-50. ⁸Kanda J, et al. Haematologica. 2008;93(10):1550-4. ⁹Ozyilmaz E, et al. Bone Marrow Transplant. 2010;45(10):1528-33. ¹⁰Storey JA, et al. J Hematol Oncol. 2009;2:44. ¹¹Miceli MH, et al. Bone Marrow Transplant. 2006;37(9):857-64. ¹²Pullarkat V, et al. Bone Marrow Transplant. 2008;42(12):799-805. ¹³Virtanen JM, et al. Eur J Haematol. 2013;91(1):85-93. ¹⁴Wermke M, et al. Lancet Haematol. 2018 May;5(5):e201-e210. ¹⁵Busca A, et al. Biol Blood Marrow Transplant. 2010;16(1):115-22. ¹⁶Altes A, et al. Ann Hematol. 2007;86(6):443-7. ¹⁷Goldberg SL, et al. J Clin Oncol. 2010;28(17):2847-52.

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Prevalence of comorbidities in transfusion-dependent MDS: Infections

Transfused MDS patients have a higher prevalence of cardiac events, diabetes mellitus, dyspnoea, and hepatic and infectious diseases than non-transfused MDS patients

Goldberg SL, et al. J Clin Oncol. 2010;28:2847-52.

Infections

- An iron rich environment enhances the growth of microorganisms. IOL leads to functional impairment of neutrophils, macrophages & natural killer cells¹⁻⁷.
- In SCT for hematologic malignancies, IOL (elevated pre-SCT SF, hepcidin level, or LIC) is a risk factor for significant infections⁸.
- An analysis from the US Medicare Registry indicated that TD MDS had a higher rate of infections than TI (81 vs 55.7%, p<0.001)⁹.
- In 138 RBC TD lower IPSS risk MDS, median time to first infection (TTI) in patients not receiving ICT was shorter (7.8 vs 27 months for ICT patients, p<0.0001)¹⁰.

Figure Time from first RBC transfusion to first infection in patients with lower IPSS risk MDS not receiving or receiving iron chelation therapy⁹.

Wong CAC, et al. Leuk Res. 2018 Apr;67:75-81.

ICT, iron chelation therapy; IOL, iron overload; LIC, liver iron concentration; SCT, stem cell transplantation; SF, serum ferritin; TD, transfusion dependent; TI, transfusion independent; TI, time to infection. ¹Cantinieaux B, et al. J Lab Clin Med. 1988;111:524-8. ²Barton Pai A, et al. Am J Nephrol. 2006;26:304-9. ³Cantinieaux B, et al. Eur J Haematol. 1987;39:28-34. ⁴Cantinieaux B, et al. J Lab Clin Med. 1999;133:353-61. ⁵Van Asbeck BS, et al. J Immunol. 1984;132:851-6. ⁶Van Asbeck BS, et al. J Infect. 1984;8:232-40. ⁷Nairz M, et al. Front Pharmacol. 2014;5:152. ⁸ Leitch HA, et al. Crit Rev Oncol Hematol. 2017 May;113:156-170. ⁹Goldberg SL, et al. J Clin Oncol. 2010;28:2847-52. ¹⁰Wong CAC, et al. Leuk Res. 2018;67:75-81.

Clir	nical endpoints considered ¹	Evidence level	Recommendation grade
IOL	in MDS may contribute to:		
•	Organ dysfunction (cardiac, hepatic)	II-2	NA
•	Infections	II-2	NA
•	Marrow failure	NA	NA
•	Decreased overall survival	II-2	NA
•	AML progression	II-2	NA
•	Clinical endpoints around SCT ²	II-2	NA
Iror	n chelation therapy may improve:		
•	Organ dysfunction	II-3	В
•	Infection risk	II-2	В
•	Effective hematopoiesis	II-2	А
•	Overall Survival	II-2	С
•	Outcomes in higher risk MDS	Ш	В
•	Clinical endpoints around SCT	II-2	В

<u>Relevant clinical endpoints around iron overload and iron chelation therapy in MDS.</u>

¹in lower risk MDS except where specified ²for hematologic malignancies including MDS AML, acute myeloid leukemia; ICT, iron chelation therapy; IOL, iron overload; MDS, myelodysplastic syndrome; NA, not applicable; SCT, hematopoietic stem cell transplantation. Levels of evidence: I, randomized controlled trials; II-1, controlled, non-randomized trials; II-2, cohort studies, preferably from more than one center; II-3, comparison to historical controls, dramatic results of uncontrolled studies; and III, expert opinion. Grading of recommendations: A, based on good evidence; B, fair evidence; and C, conflicting evidence (reference [25]).

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Iron overload contributes to marrow failure in MDS - preclinical

- Erythropoiesis was impaired in vitro in MDS patients with SF >250ng/mL; p=0.0012)¹.
- Hematologic reconstitution of normal donor cells was delayed in IOL recipients (p<0.05)².
- The bone marrow hematopoietic microenvironment was impaired in mice with IOL
 - with decreased expression of CXCL-12, kit-ligand, VCAM-1, IGF-1 and serum EPO & TPO.
 - This led to impaired interactions between stromal and HSPC, and impaired hematopoiesis².
 - The proliferation of mouse bone marrow mesenchymal cells was also impaired by IOL³.
- Some hypothesize that SF may have inflammatory, angiogenic, matrix remodeling and immunomodulatory properties, which may explain some observations⁴.
- In summary, multiple pre-clinical data give biological plausibility to a suppressive effect of IOL on hematopoiesis.

¹Hartmann J, et al. Leuk Res 2013;37(3):327-32. ²Taoka, et al. Int. J. Hematol. 95 (February (2)) (2012) 149–159. ³Zhang Y, et al., PLoS One 10 (3) (2015) E0120219. ⁴Raaijmakers M.H.,Cell Stem Cell 14 (June (6)) (2014) 695–697.

Hartmann J, et al. Leukemia Research. 2013 Mar;37(3):327-32.

BFU-E, burst-forming units erythroid; EPIC, Evaluation of Patients' Iron Chelation with Exjade; IWG, International Working Group; SF, serum ferritin. Gattermann N, et al. Haematologica. 2012;97:1364-71. Cheson BD, et al. Blood. 2006;108:419-25.

IOL/Marrow Failure: Oxidative Stress

- Measures of cellular oxidative DNA damage were elevated with RBC transfusion¹.
- Plasma nitrite & malonaldehyde, a secondary product of lipid peroxidation, showed a significant increase in patients with MDS & IOL (p<0.05)².
 - Both were positively correlated with the SF level.
- The clonogenic capacity of HSPC was inhibited by ROS³
 - an effect which was attenuated by the antioxidant NAC or the iron chelator DFX.

Hematological responses in MDS patients treated with DFX: an EPIC post-hoc analysis using IWG 2006 criteria

Survival without relapse

Gattermann N, et al. Haematologica. 2012 Sep;97(9):1364-71.

Studies examining hematologic improvement in transfusion dependent lower IPSS risk MDS patients receiving ICT.

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Study	N (RBC, NEUTS, PLTS)	Erythroid response	1	leutrophil response	Platelet response	Reference
Jensen 1996 ¹	5	5 TI		NR	NR	[<u>174]</u>
Cilloni 2011 ²	57	45.6%		NR	NR	[<u>187</u>]
List 2012	173 52 77	15%		15%	22%	[<u>186]</u>
Gattermann 2012	247 50 100	21.5%		22%	13%	[<u>183]</u>
Nolte 2012	50	11%		NR	NR	[<u>185]</u>
Angelucci 2012	152	TI in 12% at 12 months		NR	NR	[255]
Breccia 2015	40	45.6		NR	NR	[<u>256]</u>
Maurillo 2015 ³	105	7.1		7.1	5.9	[<u>191]</u>
Rose 2016	57	19% at 12 months		NR	NR	[257]
Messa 2017 ⁴	98	45.6		³ NR	NR	[258]

AA, aplastic anemia; AML, acute myeloid leukemia; DFX, deferasirox; DFO, deferasirox; monine, inc, monine, it, number; NEUTS, neutrophils; NR, not reported; PLTS, platelets; PMF, primary myelofibrosis; RBC, red blood cell

Clir	nical endpoints considered ¹	Evidence level	Recommendation grade
IOL	in MDS may contribute to:		
•	Organ dysfunction (cardiac, hepatic)	II-2	NA
•	Infections	II-2	NA
•	Marrow failure	NA	NA
•	Decreased overall survival	II-2	NA
•	AML progression	II-2	NA
•	Clinical endpoints around SCT ²	II-2	NA
Iror	n chelation therapy may improve:		
•	Organ dysfunction	II-3	В
•	Infection risk	II-2	В
•	Effective hematopoiesis	II-2	А
•	Overall Survival	II-2	С
•	Outcomes in higher risk MDS	Ш	В
•	Clinical endpoints around SCT	II-2	В

<u>Relevant clinical endpoints around iron overload and iron chelation therapy in MDS.</u>

¹in lower risk MDS except where specified ²for hematologic malignancies including MDS AML, acute myeloid leukemia; ICT, iron chelation therapy; IOL, iron overload; MDS, myelodysplastic syndrome; NA, not applicable; SCT, hematopoietic stem cell transplantation. Levels of evidence: I, randomized controlled trials; II-1, controlled, non-randomized trials; II-2, cohort studies, preferably from more than one center; II-3, comparison to historical controls, dramatic results of uncontrolled studies; and III, expert opinion. Grading of recommendations: A, based on good evidence; B, fair evidence; and C, conflicting evidence (reference [25]).

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Study	Ν	IOL measure	Endpoint	Findings
Malcovati 2006	467	Per +1	OS, LFS	HR 1.36, 1.40, p<0.0001
		RBCU/4wk	OS	HR 1.42, p<0.001
		Per +500SF		
		>1000ng/mL		
De Swart 2012	1000	TD	Mortality rate	
			Without DP	TI, 5%; TD, 24%
			With DP	TI, 32%; TD, 66%
Hiwase 2017	408	TD	OS	TD at any point is associated with inferior OS independent of
				the IPSS-R (p<0.0001)

Studies examining IOL & overall and leukemia-free survival in TD lower IPSS risk MDS.

¹present at death CHF, congestive heart failure; DP, disease progression; GTT, glucose tolerance test; HR, hazard ratio; IOL, iron overload; IPSS-R; International Prognostic Scoring System-Revised; LFS, leukemia free survival; LFT, liver function tests (transaminases); n, number; OS, overall survival; p, probability; RBCU, red blood cell units; SF, serum ferritin; TD, transfusion dependent; TI, transfusion independent. Modified from Wells RA et al. Leuk Res 2008 Sep;32(9):1338-53.

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

tudy	N	Design	Endpoint	Non-chelated patients	Chelated patients	p value	Ref rence
eitch 2008	178	Retrospective	Median OS	40 mo	Not reached	0.003	[<u>201</u>]
			4-year OS	43%	64%	0.003	
ose 2010	97	Prospective follow-up	Median OS	53 mo	124 mo	<0.0003	[<u>203</u>]
			Median OS: adequate vs weak ICT	NA	124 vs. 85 mo	<0.001	
			Cardiac mortality				
				34.5%	37%	NS	
eukirchen 2012	188	Matched pair analysis	Median OS	49 mo	75 mo	0.002	[<u>204</u>]
mrokji 2011	97	Retrospective	Median OS	34 mo	59 mo	0.013	[<u>205</u>]
elforge 2012	186	Retrospective	Median OS	37 mo	126 mo	<0.001	[<u>252]</u>
			Cardiac mortality	NR	NR	NS	
idan 2015 ²	3926	Retrospective, registry	Median OS	47 wk	110 wk	0.003	[<u>139</u>]
			HR for death, 14-26 wks on DFX	1	0.77		
			HR for death, ≥53 wks on DFX	1	0.34	<0.001	
emacha 2012, 2015	263	Retrospective	Median OS	105 mo	133 mo	<0.001	[<u>165</u> , <u>253</u>]
			Cardiac EFS	90 mo	137 mo	0.017	
eitch 2012	268	Retrospective	Median OS, non-RARS	44 mo	NR	<0.001	[<u>202</u>]
			Median OS, RARS				
				73.8 mo	134.4 mo	0.025	
ons 2017 ⁴	599	Prospective, registry	Median OS	47.8 mo	All 86.3 mo	<0.0001	[254]
					ICT >6 mo, 98.7 mo		
			New or progressive cardiac condition	NR	NR	NS	
ngemeijer 2016 ⁵	765	Prospective, registry	Adjusted HR (for superior OS)				[208]
			TR		1.5	0.006	
			SF	1	1.6		
ainous 2014 ⁶	1562	Meta-analysis	Pooled OR (for superior OS)	1	1 984	0.0004	[206]
eitch 2017 ⁷	239	Prospective, registry	Median OS	36 ^{2.1} y	5.2 у	<0.001	[207]
						0.03	
Canadian MDS (Prospective) Registry Analysis

- In 219 patients with IPSS LR-MDS, 83 received ICT and OS was measured from time of RBC TD
- 4 measures of frailty, comorbidity & disability at TD did not differ between ICT and non-ICT groups

Figure. Overall survival in lower IPSS risk MDS from red blood cell transfusion dependence by receipt of iron chelation therapy a) in all patients; b) in patients matched 1:1 for age (\leq 50, 51-60, 61-65, 66-70, 71-75, 76-80, and >80 years), IPSS-R score (very low + low, intermediate, and high + very high), number of RBC units/month transfused (0, >0- \leq 2, >2- \leq 4, >4- \leq 6, &>6), and time from MDS dx until RBC transfusion dependence (0, >0- \leq 6, >6-36, >36 months).

Leitch HA, et al. Br J Haematol. 2017 Oct;179(1):83-97.

Event-free survival: TELESTO

Randomized trial of deferasirox versus placebo in lower IPSS risk MDS

- Enrollment reduced by 2/3
- Mean age of patients only 60 years
- Half of placebo patients dropped out and subsequently received ICT

Angelucci E, et al. Ann Intern Med. 2020;172(8):513-522.

Clir	nical endpoints considered ¹	Evidence level	Recommendation grade
IOL	in MDS may contribute to:		
•	Organ dysfunction (cardiac, hepatic)	II-2	NA
•	Infections	II-2	NA
•	Marrow failure	NA	NA
•	Decreased overall survival	II-2	NA
•	AML progression	II-2	NA
•	Clinical endpoints around SCT ²	II-2	NA
Iror	n chelation therapy may improve:		
•	Organ dysfunction	II-3	В
•	Infection risk	II-2	В
•	Effective hematopoiesis	II-2	А
•	Overall Survival	II-2	С
•	Outcomes in higher risk MDS	III	В
•	Clinical endpoints around SCT	II-2	В

<u>Relevant clinical endpoints around iron overload and iron chelation therapy in MDS.</u>

¹in lower risk MDS except where specified ²for hematologic malignancies including MDS AML, acute myeloid leukemia; ICT, iron chelation therapy; IOL, iron overload; MDS, myelodysplastic syndrome; NA, not applicable; SCT, hematopoietic stem cell transplantation. Levels of evidence: I, randomized controlled trials; II-1, controlled, non-randomized trials; II-2, cohort studies, preferably from more than one center; II-3, comparison to historical controls, dramatic results of uncontrolled studies; and III, expert opinion. Grading of recommendations: A, based on good evidence; B, fair evidence; and C, conflicting evidence (reference [25]).

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Iron Chelation Therapy in Transfusion-Dependent, Higher Risk MDS

- 2 studies of ICT in patients receiving novel agents
- A retrospective study (n=51) transfusion-dependent, intermediateto-very high IPSS-R risk MDS, receiving DFX
- 36 (71%) received azacitidine (AZA) concomitantly
 - 8 (16%) grade 2-3 toxicities (renal or GI), 4 (8%) required interruption
 - During DFX; <u>></u>temporary clinical benefits occurred in 22
 - 4 successfully underwent allo-SCT following DFX
 - Median SF decreased from 1709 to 1100ng/mL at 12 months (P=0.02)
 - 17 had abnormal transaminases that improved/normalized on DFX in 8
 - 1 became transfusion independent with DFX alone

ICT in HR-MDS

Musto P, et al. Br J Haematol. 2017;177(5):741-750.

Clir	nical endpoints considered ¹	Evidence level	Recommendation grade
IOL	in MDS may contribute to:		
•	Organ dysfunction (cardiac, hepatic)	II-2	NA
•	Infections	II-2	NA
•	Marrow failure	NA	NA
•	Decreased overall survival	II-2	NA
•	AML progression	II-2	NA
•	Clinical endpoints around SCT ²	II-2	NA
Iror	n chelation therapy may improve:		
•	Organ dysfunction	II-3	В
•	Infection risk	II-2	В
•	Effective hematopoiesis	II-2	А
•	Overall Survival	II-2	С
•	Outcomes in higher risk MDS	III	В
•	Clinical endpoints around SCT	II-2	В

<u>Relevant clinical endpoints around iron overload and iron chelation therapy in MDS.</u>

¹in lower risk MDS except where specified ²for hematologic malignancies including MDS AML, acute myeloid leukemia; ICT, iron chelation therapy; IOL, iron overload; MDS, myelodysplastic syndrome; NA, not applicable; SCT, hematopoietic stem cell transplantation. Levels of evidence: I, randomized controlled trials; II-1, controlled, non-randomized trials; II-2, cohort studies, preferably from more than one center; II-3, comparison to historical controls, dramatic results of uncontrolled studies; and III, expert opinion. Grading of recommendations: A, based on good evidence; B, fair evidence; and C, conflicting evidence (reference [25]).

Leitch HA, et al. Leuk Res. 2018 Nov;74:21-41.

Retrospective: Impact of transfusion burden prior to SCT on OS and NRM post-SCT (n=357)

Impact of ferritin level prior to SCT on OS and NRM post-SCT (n = 129)

The impact of serum ferritin remained unchanged when the model was adjusted for albumin level

For retros	protive analy	ses, stu	cies of <u>></u> 50	a tients wer	included; f	or prospect	ive analyse	s, <u>></u> 25 patie	nts.			
Analysis	SCT	N	Diseases	IOL	Infection	Relapse	NRM	TRM	OS	other	Comments	Reference
Retro	MA	543	Multiple	Pre SF				0.002 (for	-0.00125	SOS 0.05, aGVH	Included albumin	Armand 2007
								MDS)		NS		
Retro	Allo NOS	172	MDS, AML	Pre SF	0.032 BSI				NS			Platzbecker 2008
{etro	MA & RIC	217	MDS	Pre SF		NS	0.03		0.01		Still sig adj for	Alessandrino 2010
				TD pre			0.023		0.003		albumin	
Potro		101	Multiplo	Bro SE	NS	NS		0.002	0.001		INS IN RIC	100 2009
Retro		264	Multiple	Pre SF	Infectious	113	0.01@5v	0.005	0.001	organ failure		Kataoka 2009
letto		204	wattple	The Si	deaths 0.01		<u>0.01@3y</u>	0.05@57		deaths 0.02		
Retro	Allo NOS	1448	Multiple	?pre SF				0.03@2v	<0.005		NRM NS for NMA	Sorror 2009
Retro	MA	222	Multiple	Pre SF		0.003 RFS		<u></u>	0.003			Mahindra 2009
₹etro	MA & RIC	477	Multiple	Pre SF	NS							Dadwal 2015
Retro	Allo NOS	84	Multiple	Pre SF	<0.023	0.039 DFS			0.023	Engraftment,		Sivgin 2012
	1									aGVH NS		
letro	MA	230	Multiple	Pre SF					<0.001		ROC analysis	Bazuaye 2012
₹etro	MA & RIC	114	AML, MDS	Pre SF)100 BSI 0.02						Time to	Tachibana 2011
											engraftment 0.03	
letro	Allo NOS	261	AL, MDS	Pre-SF		<u><</u> 0.031 DFS			<u><</u> 0.043			Tachibana 2012
letro	MA & RIC	158	Multiple	Pre SF				0.04	0.002			Michallat 2013
Retro	Allo NOS	290	Multiple	Pre SF				Increased (P	<0.02		OS sig @ 0-6, 6-	Meyer 2013
								NR)			12, 12-24 & 25-60	
latra		200	Multiple	Dro CE		0.015 0.002		0.022	0.012		mo	Mahlin 2011
letto		509	wuitiple	PIE SF		0.015, 0.002 DES		0.025	0.015			Wallin 2011
?etro		3917	Multiple	Pre SF		KI S	0.002 for SE		0.02.0.001 for SE			Vaughn 2015
letio	, , , , , , , , , , , , , , , , , , ,	5517	manapie				>2500		>1000 >2500			Vaugini 2010
letro	МА	59	Multiple	LIC at	Invasive		2300		1000,72500			Altes 2004
				necropsy	aspergillus							
					0.012							
letro	MA1	1248	Multiple	Pre(?) SF	nvasive mold							Garcia-Vidal 2008
					<40d 0.02							
Retro	RIC	99	MDS, AML ²	Pre SF		NS, DFS NS		NS	0.03			Lim 2010
≀etro	NMA	64	multiple	Pre SF		NS	NS		0.01	aGVH NS		Mahindra 2009
Retro	Allo NOS &	55	Multiple	P e hepcidin	acterial 0.007							Kanda 2008
	ASCT											
Retro	MA & ASCT	148	Multiple	Pre SF	Pulm fungal							Ozyilmaz 2010
					0.045							
Retro	MA, NMA &	427		Pre SF						SOS 0.04		Maradei 2009
. .	ASCT				0.00.00.4			0.00	0.01			<u>.</u>
ketro	VIA, NIVIA &	//	Nultiple	BIMIS	0.02 IRM			0.03	0.01		SF, RBC TR, BM	Storey 2009
Potro	ASCI	215		Dro SE		0.040.0.021			0.002		iron stores.	Mahindra 2009
ieti U	ASCI	212		FIE SF		0.049, 0.021			0.002			
Patro	ASCT	367	NANA	BMIS	avere <0.001	rf3						Miceli 2006
<u>Netro</u>		507		DIVIIS								

Leitch HA et al. Crit Rev Oncol Hematol. 2017 May;113:156-170.

Table 4 (continued)

Analysis	SCT	Ν	Diseases	IOL	Infection	Relapse	NRM	TRM	OS	other	Comments	Reference
Meta-	MA & RIC	276	Multiple	SF pre			0.026 RIC		0.036		Including CRP	Armand 2014
analysis												
Pro	ΜΔ	45	ΜDS ΔΙ	SE LIC by					SE n=0.04211C NS		Including CRP	Armand 2012 ³
	MA .	45	WDS, AL	MRI		51, EIC NS	51, LIC 145		51 p=0.042EIC113	Lie No	mendung en	
Pro	MA & RIC	190	Multiple	SF pre	0.032 BSI			0.004	0.013@100d	0.001 severe GVH		Pullarkat 2008
Pro	MA & RIC	190	AML, AL	Pre SF	NS@100d	NS	NS	EFS NS	0.017	Grade II-IV aGVH		Tanaka 2015
										NS		
Pro	MA & RIC	67	Multiple	LIC by MRI	0.003 severe			LIC NS	LIC NS			Virtanen 2013 ³
Pro	Allo NOS	133	AML, MDS	LIC by MRI,	0.023		D100 0.002					Wermke 2015
				LPI	bacteremia LPI		LPI					
Pro	MA & RIC	88	MDS, AML	Pre SF, LIC by			0.016 LIC		0.038 LIC			Wermke 2012 ³
				MRI, LPI								
Pro	MA & RIC	102	Multiple	Post SF, LIC	0.006 IFI							Busca 2010
				by SQUID								
Pro	MA & RIC	88	Multiple	Pre SF, LIC by			SF 0.03		SF 0.05			Trottier 2013 ³
		25		MRI			LIC NS	0.04	LIC NS			All 2002
Pro	Allo NUS &	25	wuitipie	Pre SF, TS				0.01	<u><</u> 0.02	Grade III-IV aGVH		Altes 2002
	ASCI	50			0.000 0.010					<u><</u> 0.01		All 2007
Pro	MA, RIC &	50	iviuitiple	Pre SF, 15	0.006, 0.012					Severe mucositis		Altes 2007
	ASCI			>80%	invasive					SF 0.03		
					aspergillus							

¹predominandly ²secondary ³lincluded in meta-analysis Abbreviations: AA, aplastic anemia; AE, adverse events; AL, acute leukemia; Allo, allogeneic; ALT, alanine aminotransferase; AML, acute myeloid leukemia; ASCT, autologous stem cell transplantation; AST, aspartate aminotransferase; BM, bone marrow; BMIS, bone marrow iron score; BSI, bloodstream infection; bx, biopsy; CR, complete remission; CRP, C-reactive protein; CSP, cyclosporine; D, day; DFS, disease-free survival; EFS, event-free survival; GVH, graft versus host; Hb, hemoglobin; IFI, invasive fungal infection; IOL, iron overload; IRM, infection related mortality; ILC, liver iron concentration; LFT's, liver function tests; LLN, lower limit of normal; LPI, labile plasma iron; MA, myeloablative; MDS, myelodysplastic syndrome; mo, months; MRI, magnetic resonance imaging; NMA, non-myeloablative; MVA, multivariate analysis; n, number; NOS, not otherwise specified; NRM, non-relapse mortality; IS, not significant; OS, overall survival; p, probability; pro, prospective; RBCU, red blood cell units; retro, retrospective; RFS, relapse free survival; RI, relapse incidence; RIC, reduced intensity conditioning; ROC, receiver-operator curve; SCT, stem cell transplantation, SF, serum ferritin; SOS, sinusoidal obstructive syndrome; SQUID, Superconducting Quantum Interference Device; TD, transfusion dependent; TR, transfusion requirement; TRM, transplant-related mortality; IS, transferrin saturation

Leitch HA, et al. Crit Rev Oncol Hematol. 2017 May;113:156-170.

Iron Overload Prior to SCT: LIC

• 4 prospective studies examined LIC & outcomes in SCT

Studies examining an association between elevated LIC ar/d clinical outcomes in SCT									
			Clinical outcome, p-value						
Study	N	Severe infection	NRM	OS	GVH	relapse			
Armand	48	-	NS	NS	NS	NS			
Virtanen	67	0.0003	-	-	-	-			
Trottier	88	-	NS	NS	-	-			
Wermke	133	-	0.016	0.038	-	-			

- A meta-analysis was conducted from these 4 studies⁴
 - The HR for mortality with LIC >7mg/gDW (primary endpoint) was NS (p=0.18)
 - [But SF >1000 ng/mL was significant for OS (p=0.036)]

¹Virtanen JM, et al. Eur J Haematol. 2013;91(1):85-9 ²Trottier BJ, et al. Blood. 2013;122(9):1678-84. ³Wermke M, et al. Clin Cancer Res. 2012;18(23):6460-8. ⁴Armand P, et al. Biol Blood Marrow Transplant. 2014;20(8):1248-51.

Iron chelation *prior* to SCT (n = 101)

SF > 1,000 = patients with serum ferritin \ge 1,000 µg/L at the time of SCT;

SF < 1,000 = patients with serum ferritin < 1,000 μ g/L at the time of SCT, without ICT;

IC = patients with serum ferritin decreased to < 1,000 μ g/L with ICT before SCT.

Iron Chelation Therapy (deferoxamine) Post-SCT

Kaloyannidis P, et al. Transplantation. 2010;89(4):472-9.

Iron-Induced Oxidative Stress

LPI, labile plasma iron; Tf, transferrin; um, micromolar. Figure courtesy of E. Rachmilewitz.

Non-transferrin-bound iron

Structure of the cells of our body

- Proteins
 - Enzymes do the work
 - Structural proteins
- Lipids
 - Plasma membrane cell integrity
 - Lysosomes sequester toxic substances
 - Golgi process proteins
- Nucleic acids
 - DNA stores genetic code
 - RNA translates the genetic code to proteins
- Mitochondria
 - the powerhouse of the cell

Organelles of the Cell

Cellular Targets of Labile Iron

- Ability to transfer electrons
 (Fenton reaction: Fe²⁺ + H₂O₂ → Fe³⁺ + OH⁻ + 'OH)
- Production of free O₂ radicals:

ROS may be toxic

Gattermann N, Rachmilewitz EA. Ann Hematol. 2011;90:1-10.

ROS = Reactive Oxygen Species

LPI in Lower-Risk MDS

EUMDS Registry, n=247

Impact of LPI on survival stratified by transfusion status as a time dependent variable (censored at time of starting chelation)

ALLIVE: Non-Relapse Mortality

 By including nitrolotriacetic acid (NTA) in the assay at concentrations too low to affect transferrin-bound iron, iron bound to substances such as citrate and albumin can be mobilized, allowing its measurement as enhanced LPI (eLPI)

 Elevated pre-SCT eLPI was an independent predictor of NRM (p=0.0082) & OS (p<0.0001) in multivariate analysis

Wermke M, et al. Lancet Haematol. 2018;5(5):e201-e210.

ALLIVE: Overall Survival

Wermke M, et al. Lancet Haematol. 2018;5(5):e201-e210.

Electron micrographs of cardiomyocytes

C.H. Kim and H.A. Leitch

Normal cell

IOL cell from BTM

Kim C & Leitch HA. Crit Rev Haem/Oncol 2021 Jul;163:103367. doi: 10.1016.

Objectives:

- Measurements of iron overload
- Why address iron overload in MDS
- Relevant targets of iron reduction in MDS
- Summary/conclusions

So what targets to use with iron reduction?

- Probably all of them:
 - Clinical:
 - Transfusion burden
 - Organ function
 - Hematologic improvement
 - Laboratory:
 - Serum ferritin level
 - Organ iron
 - Measures of oxidative stress: NTBI, LPI, eLPI, ROS, measures of cellular oxidative damage
 - These measures while straightforward are not validated or standardized between laboratories
 - Moreover, not all oxidative species are created equal, for example there are several types of ROS & which is most related to clinical status is currently unclear
 - However....

High transferrin saturation predicts inferior clinical outcomes in patients with MDS

• 718 patients from the Canadian MDS (MDS-CAN) patient registry

Teichman J et al, Haematologica. 2022 Aug 18. doi: 10.3324/haematol.2022.280723. Online ahead of print. PMID: 35979720

What about endpoints?

Starting points

Proposed in 2008

Table 4

Proposed classification system for severity of iron overload in MDS.

Serum ferritin level (ng/mL)	Organ function ^a			
	Normal (A)	Abnormal (B)		
501–1000	1A	1B		
1001-2500	2A	2B		
2501-5000	3A	3B		
>5000	4A	4B		

Criteria for organ dysfunction: Cardiac, left ventricular ejection fraction < 50%; Hepatic, abnormal transaminase levels, hepatic fibrosis or cirrhosis; Pancreatic endocrine, impaired glucose tolerance.

Adapted from Suzuki et al., Int J Hematol 2008; 88: 30–35. With permission from the International Journal of Hematology, Springer Press.

^a Cardiac, liver and pancreatic endocrine related to iron overload; organ dysfunction progresses as ferritin or transfusion burden increases.

Proposed right now

PROPOSED criteria for severity of Iron Overload in MDS TSAT or LPI Ferritin Cardiac Hepatic ng/mL Imaging Imaging LIC (g/mgDW) msec Negligible IOL <500 normal >20 <3 Mild 501-1000 <50% or UN >20 <5 1000-2500 50-80% or UN >20 5-7 Moderate >7** >80% or DET <20* Severe >2500

*OR cardiac dysfunction: LVEF <50% **OR hepatic dysfunction: AST/ALT >2xULN, fibrosis, cirrhosis DET, detectable; DW, dry weight; LIC, liver iron concentration; LPI, labile plasma iron; TSAT, transferrin saturation; UN, undetectable

Disclaimer: This is open for discussion!!!

Endpoints

Proposed in 2008

Table 5

Proposed response criteria for the therapy of iron overload.

Response	Criteria
Complete (CR)	Decrease in SF to <2000 ng/mL AND
	Decrease in SF by \geq 500 ng/mL
Minor (MiR)	Decrease in SF to <2000 ng/mL
	BUT
	Decrease in SF by <500 ng/mL
Stable iron load (SIL)	SF constantly elevated BUT <4000 ng/mL
No Response (NR)	Increase in SF of \geq 500 ng/mL
	OR
	SF constantly >4000 ng/mL

Abbreviation: SF, serum ferritin. Adapted from Valent P et al., Eur J Clin Invest 2008; 38(3): 143–149. With permission from Wiley-Blackwell.

Proposed right now

PROPOSED response criteria for	therapy of IOL in MDS			
Complete	Decrease <a>2 <a>1 category to negligible IOL			
Very Good Partial	Decrease <a>2 <a>1 category to Mild IOL			
Partial	Decrease >1 category to moderate			
Stable	No change in category			
Progression	Worsening of IOL by <a>1 category			
Disclaiment. This is onen for discussion!!!				

Disclaimer: This is open for discussion!!!

How to keep track of all this data?

This tool is designed to help streamline the continuum of care for MDS patients, from diagnosis and staging through to treatment.

It features a comprehensive algorithm, which is the outcome of a Canada-wide physician consensus on best practices in MDS management. Ultimately it will serve to support physicians at key decision points in their treatment of MDS patients.

START

FRANÇAIS

The content of this program is supported by an unrestricted educational grant from Celgene Inc.

The MDS Clear Path has been developed and approved by a Steering Committee with the input of over 60 Canadian physicians. Members of this Steering Committee are Dr. Richard Wells, Dr. Heather Leitch, Dr. Harold Olney and Dr. April Shamy. The opinions expressed are solely those of the Steering Committee members. The content is specifically intended to be used by qualified physicians/medical professionals, to assist them in the management of MDS patients. The MDS Clear Path does not substitute, nor is it intended to substitute for the medical advice of an appropriately qualified and licensed physician or other healthcare provider. Use of the application is undertaken entirely on your own responsibility as a healthcare professional. The information provided here is for educational and informational purposes only. In no way should it be considered as offering medical advice. The digital formats of the MDS Clear Path have been completed by The Adpharm Inc. (a healthcare communications company) through funding from Celgene Inc. The sole purpose was to deliver the content of the original MDS Clear Path in a user friendly, digital format. No content was modified in the transition to a digital format. All digital formats are the property of Celgene Inc. This presentation may include indications and treatment regimens which are not authorized in Canada. Please refer to current product monographs for complete indication and safety information.

www.mdsclearpath.org

Canadian Guidelines for the Management of Iron Overload in MDS

Leukemia Research 74 (2018) 21-41

Iron overload in myelodysplastic syndromes: Evidence based guidelines from the Canadian consortium on MDS

Heather A. Leitch^{a,*}, Rena Buckstein^b, Nancy Zhu^c, Thomas J. Nevill^d, Karen W.L. Yee^e, Brian Leber^f, Mary-Margaret Keating^g, Eve St. Hilaire^h, Rajat Kumarⁱ, Robert Delage^j, Michelle Geddes^k, John M. Storring^l, April Shamy^m, Mohamed Elemaryⁿ, Richard A. Wells^b

^a Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada

^b Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

^c Hematology/Oncology, University of Alberta, Edmonton, Alberta, Canada

^d Leukemia/BMT Program of British Columbia, Division of Hematology, Vancouver, BC, Canada

^e Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada

^f McMaster University, Hamilton, Ontario, Canada

- ^g Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada
- ^h Centre d'Oncologie, Dr-Leon-Richard, Moncton, New Brunswick, Canada
- ⁱ Hematology/Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada

^j Hematology Department, Centre Hospitalier Universitaire, Laval University, Quebec, QC, Canada

^k Department of Medicine/Hematology, Foothills Medical Centre, Calgary, Alberta, Canada

¹ McGill University Health Centre, Montreal, Quebec, Canada

^m Sir Mortimer B Davis Hospital, McGill University, Montreal, Quebec, Canada

ⁿ Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

MDS IRON ROAD

Guidelines for the diagnosis, workup and management of iron overload in MDS from the Canadian Consortium on MDS

This tool is designed to help streamline the care of MDS patients with Iron overload (IOL). It features comprehensive information on clinical endpoints impacted by and IOL reduction, the outcome of a Canada-wide physician consensus on best practices in IOL management in MDS. It will support physicians in their treatment of MDS patients with IOL.

ENGLISH

FRENCH

Canadian guidelines for the management of iron overload in MDS

Canadian guidelines for the management of iron overload in MDS

Objectives:

- Measurements of iron overload
- Why address iron overload in MDS
- Relevant targets of iron reduction in MDS
- Summary/conclusions

Summary/Conclusions:

- There is increasing evidence that control of iron load is of clinical benefit in MDS
 - The number of chelators we have access to is limited
 - Use of these chelators may be limited by side effects
- In future, we will hopefully have access to more therapeutic options to *modify disease course* in MDS
 - This in turn will *induce transfusion independence*
 - which will minimize iron overload and optimize overall survival & QOL
- Reduce IOL with iron chelation where MDS therapies are not available & phlebotomies are not feasible
- Take into account RBC transfusion history, ferritin level, organ imaging & function, and measures of oxidative stress

What the Internet is Saying About Iron Overload

• "Iron is the new cholesterol"¹

- Iron is central to many processes & disorders.
- "Such is the Faustian bargain that has been struck by life on this planet. Oxygen & iron are essential for energy production but may also conspire to destroy the delicate order of our cells. 'Life was designed to exist at the very interface between iron sufficiency and deficiency.'"

• Iron is an ancient signaling molecule²

- Iron was involved in signaling billions of years before the existence of ATP
- "Environmental conditions in porous hydrothermal vents where heated, mineral-laden seawater spews from cracks in the ocean crust — created a gradient in positively charged protons that served as a 'battery' to fuel the creation of organic molecules & proto-cells."

8kF5DdT63piM%253A%252C47OlKi0pQGQH1M%252C_&vet=1&usg=Al4_kTdoR7jrkyj0uRl2G3chR_g728qWw&sa=X&ved=2ahUKEwi5q4rl7JroAhW-GzQIHUtCDVkQ9QEwAXoECAsQHA#imgrc=Pn8kpMd3YvS-WM&imgdii=zamZx1K0N4kwUM

Future directions

QUESTIONS & DISCUSSION