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Abstract

Myelodysplastic syndromes (MDS) are a family of myeloid cancers 
with diverse genotypes and phenotypes characterized by ineffective 
haematopoiesis and risk of transformation to acute myeloid leukaemia 
(AML). Some epidemiological data indicate that MDS incidence is 
increasing in resource-rich regions but this is controversial. Most MDS 
cases are caused by randomly acquired somatic mutations. In some 
patients, the phenotype and/or genotype of MDS overlaps with that of 
bone marrow failure disorders such as aplastic anaemia, paroxysmal 
nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such 
as the revised International Prognostic Scoring System (IPSS-R), provide 
reasonably accurate predictions of survival at the population level. 
Therapeutic goals in individuals with lower-risk MDS include improving 
quality of life and minimizing erythrocyte and platelet transfusions. 
Therapeutic goals in people with higher-risk MDS include decreasing the 
risk of AML transformation and prolonging survival. Haematopoietic 
cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected 
individuals receive this treatment. However, how, when and in which 
patients with HCT for MDS should be performed remains controversial, 
with some studies suggesting HCT is preferred in some individuals with 
higher-risk MDS. Advances in the understanding of MDS biology offer 
the prospect of new therapeutic approaches.
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recent progress in the field of MDS with a focus on pathophysiology, 
diagnosis and treatment as well as future research directions.

Epidemiology
Prevalence and incidence
The available epidemiological data on MDS incidence and prevalence 
are of poor quality, with prevalence and incidence estimates ranging by 
tenfold in different countries or regions4,9,14–32 (Fig. 1 and Supplementary 
Table 1). Most accurate studies are from resource-rich countries/regions 
such as the USA, Europe and Scandinavia. Obtaining reliable data is 
confounded by evolving definitions and classifications (for example, 
the fifth edition of the WHO Classification), incomplete reporting and 
surveillance biases. The Surveillance, Epidemiology, and End Results 
(SEER) programme reported an age-adjusted annual incidence of 
MDS of 3.28 cases per 100,000 population in 2001 and of 5.6 cases 
per 100,000 population in 2010, a 60% increase4,9,33,34. Whether this is 
an accurate estimate is questionable35–37. Data from the HAEMACARE 
study report a low incidence of MDS in Eastern Europe, which likely 
reflects the aforementioned biases38.

In the SEER dataset, white individuals with non-Hispanic surnames 
have the highest incidence rate of MDS and Asian and Pacific Islander 
individuals have the lowest incidence rate of MDS (an average of 4.8 ver-
sus 3.2 cases per 100,000 population, respectively, for the 2011–2015 
interval)14.

The seemingly increased incidence rate of MDS for 2011–2015 
contrasts with decreasing incidence rate during the period 2001–2010 
(3.3–5.6 versus 4.7–4.1 cases per 100,000 population, respectively); 
the reasons for this disparity are unknown but include changing diag-
nostic criteria, disease classification and coding, different statistical 
models, a changing arbitrary boundary between MDS and AML, and 
surveillance biases39. Interestingly, a study employing a complete 
blood cell count and bone marrow biopsy claims-based algorithm 
reported an annual incidence of MDS of 75 cases per 100,000 popula-
tion ≥65 years of age, much higher than the 20 cases per 100,000 popu-
lation reported by the SEER programme for the same age cohort36. 
However, claims-based algorithms are potentially confounded by 
physician over-reporting of MDS to gain approval for the use of anaemia 
drugs such as erythropoietin.

MDS is uncommon in children and adolescents40 but incidence 
increases with age; however, age is a risk factor for MDS and not a cause, 
probably reflecting the accumulation of driver mutations over time. 
No difference in MDS incidence based on sex has been observed in 
patients <40 years of age, whereas there is a marked male predominance 
in those >40 years of age, consistent with different forms of MDS and/or  
different aetiologies at different ages34. The causes of most cases of 
MDS are unknown41.

Risk factors
Factors reported to be associated with MDS include exposures to ion-
izing radiation (Fig. 2), chemicals such as benzene, some anticancer 
drugs (including mechlorethamine, procarbazine, chlorambucil, 
cyclophosphamide, ifosfamide, etoposide, teniposide, doxorubicin, 
daunorubicin and mitoxantrone), and hereditary disorders such as 
Fanconi anaemia, Shwachman–Diamond syndrome, Diamond–Black-
fan anaemia, familial platelet disorder with a propensity to myeloid 
cancers, severe congenital neutropenia and dyskeratosis congenita42–49. 
People with a family history of leukaemia, in some cases a genetically 
identical twin or a sibling, are at increased risk of developing MDS 
as are people with aplastic anaemia50–55. The impact of exposure to 

Introduction
Myelodysplastic syndromes (MDS; also known as myelodysplastic 
neoplasms) encompass a spectrum of related, phenotypically and 
genotypically diverse myeloid cancers. MDS are characterized by inef-
fective haematopoiesis in one or several myeloid lineages and a risk of 
progression to acute myeloid leukaemia (AML)1–3. Some epidemiologi-
cal data suggest an increasing incidence of MDS4,5, predominately in 
older persons, and that MDS incidence is increased in cancer survivors 
receiving prior chemotherapy and/or radiation therapy6; however, 
these incidence data are controversial7–9. The nomenclature and clas-
sification of MDS are complex and have a long, complicated history10. 
The gold standard and most commonly used classification system, the 
2022 revision of the fifth edition of the WHO Classification of Haema-
tolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms, 
introduces the term 'myelodysplastic neoplasms' (also abbreviated 
MDS) to replace the term 'myelodysplastic syndromes' and classifies 
these cancers on the basis of genetic abnormalities and histological 
features, highlighting the neoplastic nature of these cancers and har-
monizing terminology with myeloproliferative neoplasms11 (MPN; the 
overproduction of myeloid lineage cells).

In some subtypes of MDS, there is overlap with AML and other dis-
orders in genotypic and phenotypic features; consequently, accurate 
diagnosis is sometimes difficult or even impossible. Differential diag-
noses for MDS include other causes of bone marrow failure and ineffec-
tive haematopoiesis and some forms of AML12. Challenging differential 
diagnoses include increased blood or bone marrow blasts, especially 
when there is only mild dysplasia, as well as mild and moderate bone 
marrow hypoplasia.

Moreover, in some classification systems, MDS and AML are distin-
guished on the basis of the proportion of myeloblasts in bone marrow, a 
threshold that is imprecise and arbitrary as it lacks a biological basis and 
ignores imprecision in quantifying the number of myeloblasts in differ-
ent bone marrow sites and over time13. Another challenge is obtaining 
an adequate bone marrow sample for analysis, especially in individuals 
with mild bone marrow fibrosis. The fifth edition of the WHO Classifica-
tion reconsiders the boundary between MDS and AML while retaining 
the formal boundary of 20% myeloblasts in bone marrow.

The diagnosis of MDS is based on analyses of bone marrow his-
tology and cytogenetic and molecular genetic analyses. However, 
as cytopenias and dysplasia are not specific to MDS, other causes of 
cytopenias and histological changes need to be excluded. An MDS 
differential diagnosis also includes ‘precursor’ states, including idi-
opathic cytopenias of undetermined significance (ICUS), idiopathic 
dysplasia of undetermined significance (IDUS) and clonal cytopenia of 
undetermined significance (CCUS). Some current prognostic scoring 
systems that have been widely accepted to predict outcomes and direct 
therapeutic interventions are discussed below.

Treatment of MDS depends on the risk category of MDS and the 
urgency of treatment. Therapies include improving haematopoie-
sis (providing symptom relief), hypomethylating drugs (potentially 
extending survival) and allogeneic haematopoietic cell transplanta-
tion (HCT; a potential cure). Research into the aetiology, biology and 
therapy of MDS is increasing but many questions remain, for example, 
how to translate the current understanding of the pathogenesis of 
MDS into effective clinical management, and how to develop curative 
and tolerable strategies to manage patients with high-risk MDS and 
those who relapse or are resistant to initial treatment. In this Primer, 
we discuss MDS epidemiology, biology, pathophysiology, diagnosis, 
screening and prevention, therapy, and quality of life (QOL), and review 
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agents such as insecticides and herbicides and of lifestyle covariates, 
such as cigarette smoking, obesity, and red meat, fruit and vegetable 
consumption, on MDS risk are controversial44,56.

People with aplastic anaemia receiving immune-suppressive 
therapy have a 5-year actuarial probability of developing MDS and/or  
AML of 2–4% and a 10-year risk of about 15–25%57 (Fig. 2a). Immune 
abnormalities can occur at diagnosis or at any time over the course 
of MDS. Conversely, there is an increased risk of MDS in people with 
immune abnormalities such as dysfunction of T cells, natural killer cells 
and/or dendritic cells, aberrant antibody and/or cytokine production, 
abnormal neutrophil function, and hypogammaglobulinaemia and/or 
hypergammaglobulinaemia58. MDS risk is also increased in individuals 
with autoimmune disorders such as systemic lupus erythematosus, 
rheumatoid arthritis, Sjogren syndrome, and vacuoles, E1-activating 
enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome59–61.

Many patients with MDS are older and many will have had age-
related somatic mutations referred to as clonal haematopoiesis of 
indeterminate potential (CHIP), which may be unrelated to the develop-
ment of MDS in some cases. By contrast, many cases of MDS in children 
and younger adults and in some older persons are associated with a 
germline genetic predisposition62–64. Because there are no phenotype 
differences between inherited and sporadic disease, genetic testing 
is needed to identify these cases. This MDS category is discussed in 
the 2022 fifth edition of the WHO Classification and the International 
Consensus Classification (ICC) of Myeloid Neoplasms and Acute Leu-
kaemia. The presence of an inherited genetic predisposition should 
now be indicated in the diagnosis. Genes commonly mutated include 
DDX41, SAMD9, SAMD9L and GATA2 (refs.65–67). These mutations occur in 

several other myeloid neoplasms and, if found, require familial genetic 
testing to identify persons at risk.

Mechanisms/pathophysiology
Relationship between aplastic anaemia, PNH, MDS and AML
A complex, unanswered question is the relationship between the four 
disorders: aplastic anaemia, paroxysmal nocturnal haemoglobinuria 
(PNH), MDS and AML. It is unclear whether these are different manifes-
tations of one disorder, different disorders or a variable combination 
of different disorders52,68, and whether these diagnoses are mutually 
exclusive or whether someone can have more than one disorder syn-
chronously or metachronously. Historically, aplastic anaemia, PNH, 
MDS and AML are typically considered different disorders with distinct 
genotypes, phenotypes and pathophysiologies (Table 1). Aplastic anae-
mia is characterized by bone marrow failure and has diverse causes, 
including hereditary factors, environmental exposures, infections  
and/or autoimmunity. The uniting feature is damage to haematopoietic 
stem and/or progenitor cells; however, often, an aetiology has not been 
identified. PNH is another bone marrow failure disorder characterized 
by haemolytic anaemia (often not nocturnal) resulting from an acquired 
mutation that leads to a deficiency of glycosylphosphatidylinositol-
anchored proteins that normally protect erythrocytes from destruction 
by complement-mediated lysis. Both aplastic anaemia and PNH can 
undergo clonal evolution to MDS or AML, either by natural selection 
or in response to treatment51. The proportion of people diagnosed 
with aplastic anaemia who actually have MDS or AML is unclear and 
distinguishing between mild aplastic anaemia and MDS may be difficult 
or impossible52. This is mainly because mild aplastic anaemia and MDS 

MDS incidence
(per 100,000 population)
 0.0–2.5
 2.6–5.0
 5.1–7.5
 7.6–10.0
 10.1–12.5
 12.6–15.0
 No data available

Fig. 1 | Epidemiology of MDS. This map depicts the incidence of myelodysplastic syndromes (MDS) in each country/region based on available epidemiology data  
(see Supplementary Table 1). Epidemiological data are lacking for some countries/regions.
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can have similar histological features and overlapping cytogenetic or 
molecular changes, which may reflect the early-stage nature of skewed 
haematopoiesis. Furthermore, some studies suggest that immune 
mechanisms in aplastic anaemia can also operate in some cases of MDS, 
especially mild MDS69–71. Furthermore, ~50% of people with aplastic 
anaemia have a PNH-like clone, although this proportion varies from 
1% to 10% in different studies of people with MDS72,73. Some patients 
with PNH develop features of aplastic anaemia and/or AML as their 
disease evolves, and 10–20% of patients with MDS have a hypoplastic 
bone marrow (that is, containing few myeloid cells) at diagnosis, termed 
hypoplastic MDS (MDS-h; also referred to as hypocellular MDS) in the 
fifth edition of the WHO Classification11.

Several factors could explain the overlap between these disorders 
in genotype, phenotype, aetiology, pathogenesis and pathophysiology. 
Different degrees of penetrance and expressivity of genetic altera-
tions likely explain some of this overlap74. However, there are distinct 
differences in the frequencies of some cytogenetic abnormalities and 
mutations in these disorders. Cytogenetic abnormalities are detected 
in up to 15% of people with aplastic anaemia, the most common of which 
are trisomy 6, trisomy 8, trisomy 13 and del(7/7q)57,75. Cytogenetic 
abnormalities typical of PNH include trisomy 6, trisomy 8, del(5q) and 
del(7), and these alterations are present in 25% of patients76. About 
60% of patients with MDS have cytogenetic abnormalities, including 
del(5/5q), del(7/7q), trisomy 8, del(17p), del(20q) and del(Y)77. Some-
times, these cytogenetic abnormalities are associated with specific 
mutation topographies78. Common cytogenetic abnormalities in AML 
include t(8;21), t(15;17), inv(16), t(6;9), inv(3)/t(3;3), 11q23 rearranged, 
del(5q/5), del(7q/7), del(17p) and complex/monosomal karyotype11. 

Translocations are common in AML but rare in these seemingly related 
disorders (Fig. 2).

MDS/MPN overlap syndromes
MDS and MPN overlap syndromes (MDS/MPN) are characterized by 
overlapping phenotypic and genotypic features of both entities. Chronic 
myelomonocytic leukaemia (CMML), a typical example of MDS/MPN, 
is characterized by persistent blood monocytosis. Common somatic 
mutations include those in spliceosome genes such as SRSF2, epigenetic 
regulators such as TET2 and signal transduction genes such as RAS. 
The 2022 fifth edition of the WHO Classification provides an update 
on the diagnostic criteria for MDS/MPN. Two new subtypes of CMML, 
myelodysplastic CMML (white blood cell (WBC) count <13 × 109/l) and 
myeloproliferative CMML (WBC count ≥13 × 109/l), are defined based 
on phenotype and genotype. Myeloproliferative CMML is associated 
with mutations in the RAS signalling pathway and has a poor prognosis. 
Previous subtypes of CMML-0 (a category for cases with <2% blood blasts 
and <5% bone marrow blasts) have been eliminated. Atypical chronic 
myeloid leukaemia is renamed MDS/MPN with neutrophilia to avoid 
confusion with typical chronic myeloid leukaemia associated with the 
BCR::ABL1 fusion gene. MDS/MPN with ring sideroblasts (erythroblasts 
with a perinuclear concentration of iron-laden mitochondria that appear 
as a ‘ring’ by Prussian blue staining), thrombocytosis and SF3B1 mutation 
is now classified as MDS/MPN with SF3B1 mutation and thrombocytosis. 
A third category is MDS/MPN not otherwise specified.

Mutation topographies of these diseases also differ (Fig. 3). For 
example, mutations in RNA splicing genes, such as SF3B1, SRSF2, U2AF1 
and ZRSR2, are common in some forms of MDS (for example, SF3B1 
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Fig. 2 | Drivers of the development of aplastic anaemia, MDS and AML. 
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and SRSF2 mutations in MDS with ring sideroblasts and CMML) but are 
rare in aplastic anaemia, whereas the opposite is true for mutations in 
BCOR1 and PIGA79. Common mutations in PNH include those in BMPR2, 
F8, ITGA2B, THBD and THBS1 (ref.80). Mutations in NPM1, FLT3 and 
DNMT3A are common in AML but uncommon in the other disorders81,82.

Progression of a bone marrow failure disorder, such as PNH, to 
aplastic anaemia, MDS and/or AML may be associated with clones with 
similar or different cytogenetic abnormalities and mutation topogra-
phies51. However, the dominant clone in AML may have cytogenetic 
abnormalities and mutations unrelated to the antecedent MDS clone83. 
There are several possible explanations for these discordances. One is a 
clonal shift, whereby a mutant haematopoietic stem cell might give rise 
to subclones with different phenotypes (that is, aplastic anaemia and 
MDS subclones). Over time, as a consequence of therapy or chance, an 
initial dominant subclone is replaced by another and the disease geno-
type and phenotype may change79,84. An alternative hypothesis is a clone 
whose phenotype, and perhaps genotype, evolves from aplastic anae-
mia to MDS. As discussed above and elsewhere, it is sometimes difficult 
or impossible to distinguish mild aplastic anaemia from hypocellular 
MDS52. Getting the correct diagnosis (if there is one) is less important 
than receiving appropriate therapy. When there is ambiguity, immune 
suppression should be administered first as it is less likely to be fatal than 
HCT. MDS-h is recognized as a distinct MDS subtype in the fifth edition 
of the WHO Classification and is associated with immune-mediated 
bone marrow failure. MDS-h, PNH, aplastic anaemia and CCUS can 
share features and are sometimes difficult to accurately distinguish.

In summary, it is difficult to determine whether aplastic anaemia, 
PNH, MDS and AML are the same or different diseases. The genotypes 
and phenotypes of these disorders unavoidably overlap. In some peo-
ple, these disorders can be considered one, evolving disease whereas, 
in others, they are distinct. We suggest that diagnosis should be prob-
abilistic rather than deterministic and that physicians accept and 
acknowledge diagnostic uncertainty.

The 2022 WHO and ICC revised classifications of MDS
In 2022, the WHO and ICC proposed revised classifications of MDS11,85 
(Table 2). MDS are renamed myelodysplastic neoplasms (but continue 
to be abbreviated MDS) in the WHO Classification but not in the ICC; 
clonal haematopoiesis is recognized as a precursor disorder and CHIP 
and CCUS as clonal haematopoiesis in the WHO Classification whereas, 
in the ICC, pre-malignant clonal cytopenias are distinct entities, includ-
ing CCUS. MDS genetic subtypes described in the WHO Classification 
include MDS with low blasts and isolated del(5q) (MDS-5q), MDS with 

low blasts and SF3B1 mutation (MDS-SF3B1), and MDS with biallelic TP53 
inactivation (MDS-biTP53), referred to in the ICC as MDS with del(5q), 
MDS with mutated SF3B1, and MDS with mutated TP53, respectively. 
In the WHO Classification, MDS is subdivided into MDS with low blasts 
(MDS-LB) or with increased blasts (MDS-IB), MDS with excess blasts 1  
(MDS-EB1) and MDS-EB2 are renamed MDS-IB1 and MDS-IB2, and hypo-
plastic MDS and MDS with fibrosis are added as new MDS subtypes, 
whereas the ICC retains the ‘MDS-EB’ category.

In the WHO Classification, MDS in children is a new entity subdivided 
into childhood MDS-LB (cMDS-LB) or childhood MDS-IB (cMDS-IB).  
cMDS-LB replaces ‘refractory cytopenia of childhood’. In the ICC, 
refractory cytopenia of childhood is included in a new subsection of 
paediatric and/or germline mutation-associated disorders. This new 
category for MDS in children and adolescents includes individuals 
with hypocellular bone marrow, somatic mutations in SETBP1, ASXL1 
and RUNX1, and abnormalities in the RAS–MAPK signalling pathway.

The WHO Classification suggests a balanced approach to distin-
guishing between MDS and AML with bone marrow blast percentage 
cutoffs for most AML subtypes. The WHO Classification retains a 20% 
blast cutoff between MDS and AML but allowing a 10% cutoff for MDS/
AML, which is considered an overlapping entity. Notably, the 20% blast 
requirement is also eliminated for AML subtypes with defining genetic 
abnormalities except for AML with BCR–ABL1 or CEBPA mutations. 
The WHO Classification does not include an MDS/AML entity. There 
is agreement in both classifications that people with ≥10% blasts can 
be considered equivalent to having AML in the context of therapy and 
for inclusion in clinical trials.

MDS, unclassifiable (MDS-U) is no longer a distinct entity in either 
the WHO Classification or the ICC. The ICC introduces two distinct 
entities. The first is ‘AML with myelodysplasia-related gene mutations’, 
which includes MDS without TP53 mutations but which has mutations 
in ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and/or ZRSR2. 
These mutations are considered associated with secondary AML with 
prior MDS or MDS/MPN. The second category is a new one: ‘AML with 
myelodysplasia-related cytogenetic abnormalities’, which includes 
cases previously classified as AML with myelodysplasia-related changes 
(AML-MRC) based on MDS-associated cytogenetic findings but without 
TP53 mutation or MDS-related mutations.

Molecular pathophysiology of MDS
Frequent genetic events associated with the development of MDS 
are displayed in Figs. 4 and  5. Among individuals with MDS, 80–90% 
have a somatic mutation in more than 1 of >40 recurrently mutated 

Table 1 | Similarities and differences between aplastic anaemia, paroxysmal nocturnal haemoglobinuria and 
myelodysplastic syndromes

Condition Phenotype Aetiology Pathogenesis and 
pathophysiology

Cytogenetic 
alterations

Molecular genetic 
alterations

Aplastic anaemia Pancytopenia, hypoplasia and 
increase in non-haematopoietic 
cells, non-heterocyst

Genetic alterations, immune 
disease, environmental 
factors and idiopathic causes

Autoimmune condition Trisomy 6, trisomy 8, 
trisomy 13, del(7/7q), 
del(20q) and del(Y)

Mutations in PIGA, 
BCOR and BCORL1

Paroxysmal 
nocturnal 
haemoglobinuria

Haemolytic anaemia, 
haematuresis, thrombosis, 
icterus and megalosplenia

Genetic alterations Bone marrow failure 
disorder

Trisomy 6, trisomy 
8, del(5q) and 
monosomy 7

Mutations in BMPR2, 
ITGA2B, THBD and 
THBS1

Myelodysplastic 
syndromes

Refractory cytopenia, ineffective 
haematopoiesis, increase in 
primitive cells and abnormal cells

Ageing, ionizing radiation, 
chemical exposure, 
irradiation, immune 
abnormalities

Peripheral blood cytope-
nia and myelodysplasia 
or dysplasia

del(5/5q), del(7/7q), 
trisomy 8, del(17p), 
del(20q) and del(Y)

Mutations in TP53, 
ASXL1, TET2 and 
DNMT3A, SF3B1, 
SRSF2, U2AF1, ZRSR2
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genes78,86–88. The most common mutations are in genes encoding epi-
genetic regulators, namely DNMT3A, TET2, IDH1 and IDH2, the chro-
matin modifiers EZH2 and ASXL1, the transcription regulators ETV6, 
RUNX1 and BCOR, the cohesin complex components STAG2, CTCF and 
SMC1A, the DNA repair gene TP53, the spliceosome components SF3B1, 
U2AF1, SRSF2 and ZRSR2, and the signal transduction genes JAK2, KRAS 

and CBL78,89,90 (Table 3). A study reported race as an important consid-
eration in the genomic classification of MDS with different prediction 
accuracies91. Different mutations are preferentially associated with 
specific MDS phenotypes and with diverse clinical outcomes, and the 
specific mutation has implications for therapeutic choice. A study used 
machine learning algorithms to identify patterns of co-occurrence 
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Fig. 3 | Relationship between aplastic anaemia, MDS and AML. a, Inter-
relationships between aplastic anaemia, myelodysplastic syndromes (MDS) 
and acute myeloid leukaemia (AML). The factors driving mutagenesis in these 
conditions and the common cytogenetic abnormalities and mutations in 
each condition are depicted. b, Clonal evolution of MDS and AML. A normal 
haematopoietic stem cell (HSC) acquires one or more somatic mutations 
from intrinsic or extrinsic factors (X), resulting in clonal expansion with 

(idiopathic cytopenias of undetermined significance (ICUS), clonal cytopenia 
of undetermined significance (CCUS)) or without (age-related clonal 
haematopoiesis (ARCH), clonal haematopoiesis of indeterminate potential 
(CHIP)) haematopoietic abnormalities. Subsequent mutations, intrinsic or 
extrinsic (Y and Z), can expand the clone or subclones, resulting in further clonal 
expansion that can lead to a pre-leukaemia state, MDS and, eventually in some 
instances, AML. TF, transcription factor.
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among genotypic and phenotypic features of MDS and to identify 
potential interactions92. People with similar histological or mutation 
topographies clustered into five histological profiles (for example, the 
majority of the higher-risk MDS cohort is enriched in profile 1 while 
patients at lower risk cluster into the remaining four profiles) and eight 
mutational profiles (for example, groups A, B, G and H contain TET2, 
coexisting TET2 and SRSF2, SF3B1, and BCORL1 mutations, respectively, 
whereas groups C–F contain more heterogeneous features), suggesting 
an association with specific morphological profiles. Importantly, this 
study interrogated these categories with clinical outcomes.

The specification of previous MDS subtypes with specific muta-
tions in the fifth edition of the WHO Classification (that is, MDS-5q, 
MDS-SF3B1 and MDS-biTP53) will either illustrate the low-risk nature 
of some MDS cases and have implications for their effective treat-
ment (for example, lenalidomide for MDS-5q and luspatercept for 
MDS-SF3B1) or indicate the aggressive disease course such that early 
administration of hypomethylating drugs plus HCT intervention is 
recommended, if applicable, or individuals with these subtypes are 
included in clinical trials.

MDS-5q is a special entity that is treatable with lenalidomide. The 
efficacy of this drug is thought to be due to its ability to alter the target 
specificity of the E3 ubiquitin ligase CUL4–RBX1–DDB1–CRBN so that 
casein kinase 1 isoform-α (CK1α; encoded by CSNK1A1) is ubiquity-
lated and undergoes proteasomal degradation, thereby correcting a 
defect in ribosomal protein93,94. CSNK1A1 present within the region 
deleted in MDS-5q and CSNK1A1 haploinsufficiency sensitize cells  
to lenalidomide.

MDS-SF3B1 is a new entity in the WHO Classification and ICC that 
responds to luspatercept-aamt, a recombinant fusion decoy protein 
that binds to several endogenous TGFβ superfamily ligands to reduce 
SMAD2 and SMAD3 signalling, thereby promoting the maturation of 
late-stage erythroid precursors.

Therapy-related MDS and MDS-biTP53 are associated with poor 
response to conventional treatments and dismal outcome. These two 

disease categories frequently include patients with prior exposure 
to anticancer treatments. It is now clear that MDS-biTP53 is a distinct 
molecular entity and that the TP53 allelic state has major implications 
for genome stability, clinical presentation and outcomes in patients 
with this subtype.

Biallelic but not monoallelic TP53 mutations are an important 
prognostic co-variate in MDS. A study by the International Working 
Group for MDS Molecular Prognostic Committee reported that people 
with MDS and complex cytogenetics and somatic mutations who have  
a TP53 mutation have a worse prognosis than similar people without a  
TP53 mutation95. A study of patients with a TP53 mutation reported 
that allelic imbalance correlates with complex cytogenetics, few  
co-mutations and other high-risk features96. Biallelic TP53 mutations 
are also an independent adverse risk factor in the revised International 
Prognostic Scoring System (IPSS-R) model96 whereas monoallelic TP53  
mutations are not95.

The cohesin complex is a multisubunit protein complex that forms 
a ring-like structure around DNA and is an important transcription regu-
lator that is also involved in DNA damage repair. Mutations in the main 
genes encoding the cohesin complex, namely STAG2, RAD21, SMC1 and 
SMC3, are present in some patients with MDS or MDS/MPN, including 
CMML. Cohesin complex mutations alter the self-renewal, differentia-
tion, lineage commitment and genomic integrity of haematopoietic 
stem cells97–100.

Mutations in DNMT3A, TET2 and ASXL1, which encode regulators of 
DNA methylation, are detected in some patients with MDS but are also 
present in otherwise healthy people of comparable age, in which case 
they are termed CHIP and CCUS101. These mutations are necessary but 
not sufficient to cause MDS and the presence of some of these can be 
considered a pre-MDS condition. People with CHIP have a cumulative 
risk of developing a haematological cancer of 0.5–1% per year102,103. 
People with CCUS with two or more typical MDS-related mutations 
have a very high likelihood of developing a myeloid neoplasm within a 
median of 2 years and a cumulative risk of developing MDS of 10–20% 

Table 2 | Comparison of the WHO Classification, fifth edition, and International Consensus Classification of MDS

Category WHO Classification, fifth edition International Consensus Classification

Category 1: ‘Precursor’ 
state

Clonal haematopoiesis: CHIP, CCUS CCUS

Category 2: 
Myelodysplastic 
neoplasms/syndromes

MDS with defining genetic abnormalities; MDS with low blasts 
and isolated 5q deletion (MDS-5q); MDS with low blasts and 
SF3B1 mutation (MDS-SF3B1); MDS with biallelic TP53 inactivation 
(MDS-biTP53); MDS, morphologically defined; MDS with low 
blasts; MDS, hypoplastic; MDS-IB: MDS-IB1, MDS-IB2, MDS with 
fibrosis

MDS with mutated SF3B1; MDS with del(5q); MDS with mutated 
TP53; MDS NOS:MDS NOS without dysplasia; MDS NOS with 
single lineage dysplasia; MDS NOS with multilineage dysplasia; 
MDS with excess blasts

Category 3: 
Myelodysplastic/
myeloproliferative 
neoplasms

CMML; CMML subtyping criteria: myelodysplastic CMML, 
myeloproliferative CMML; CMML subgrouping criteria: CMML-1,  
CMML-2; MDS/MPN with neutrophilia; MDS/MPN with SF3B1 
mutation and thrombocytosis; MDS/MPN, NOS

CMML; clonal cytopenia with monocytosis of undetermined 
significance; clonal monocytosis of undetermined significance; 
atypical chronic myeloid leukaemia; MDS/MPN with thrombo
cytosis and SF3B1 mutation; MDS/MPN with ring sideroblasts  
and thrombocytosis, NOS; MDS/MPN, unclassifiable

Category 4: Paediatric 
MDS

Childhood MDS: Childhood MDS with low blasts; 
hypocellular; NOS; childhood MDS with increased blasts

Paediatric and/or germline mutation-associated disorders: 
juvenile myelomonocytic leukaemia; juvenile myelomonocytic 
leukaemia-like neoplasms; Noonan syndrome-associated 
myeloproliferative disorder; refractory cytopenia of childhood; 
haematological neoplasms with germline predisposition

Category 5: MDS/AML Not applicable MDS/AML with mutated TP53; MDS/AML with myelodysplasia-
related gene mutations; MDS/AML with myelodysplasia-related 
cytogenetic abnormalities; MDS/AML, NOS

AML, acute myeloid leukaemia; CHIP, clonal haematopoiesis of indeterminate potential; CCUS, clonal cytopenia of undetermined significance; CMML, chronic myelomonocytic leukaemia; 
MDS, myelodysplastic syndromes; MDS-IB, MDS with increased blasts; MPN, myeloproliferative neoplasm; NOS, not otherwise specified.
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per year. The WHO Classification defines CHIP and CCUS as precursor 
conditions to developing myeloid malignancies. A functional TP53 
mutation has been detected in some healthy older people104, suggest-
ing that age-related mutations can even precede diagnosis. Preclinical 
studies show that haematopoietic stem and progenitor cells bearing 
age-related TP53 mutations are resistant to chemotherapy, expand 
preferentially following treatment, and are typical characteristics of 
patients with therapy-related AML or therapy-related MDS104. In addi-
tion, a large cohort study of 4,229 individuals detected cases of inher-
ited CHIP. Interestingly, these germline genetic variations reconstruct 
haematopoietic stem cell destiny and lead to CHIP that links to clonal 
haematopoiesis and cause somatic mutations across different tissues105.

MDS is characterized by genome-wide hypermethylation that 
results in silencing of gene expression by transcription inhibition106,107. 
However, hypermethylation in patients with MDS is more widespread 
than can be accounted for by mutations in epigenetic regulator genes. 
These mutations probably do not cause MDS but are associated with 
clonality and set the stage for MDS development, interact with other 
mutations and impact prognosis108. Among different genetic altera-
tions identified in MDS, there are therapeutic implications for some 
druggable mutations such as those in IDH1, IDH2, JAK2, TP53 and spli-
ceosome component genes (Table 3). For example, the IDH1 and IDH2 
inhibitors ivosidenib and enasidenib are active in people with high-risk 
MDS who carry IDH1 and IDH2 mutations109,110.

Mutations in RNA splicing factors, such as SRSF2, SF3B1, U2AF1 
and ZRSR2, are common in some forms of MDS89. For example, SRSF2 
mutations result in skewed binding affinity and specificity of SRSF2 
with its RNA consensus motif and decreased RNA splicing efficacy111. 
Mis-spliced RNAs can be degraded by the biological surveillance system 
nonsense-mediated decay or are translated into dysfunctional proteins. 
These effects might partially explain cytopenias and/or ineffective 
haematopoiesis in MDS112. SF3B1 mutations are especially common in 
people with ring sideroblasts with erythroid dysplasia, who respond 
preferentially to luspatercept and lenalidomide113–117. The responsive-
ness to these two drugs is significant because it helps to alleviate the 
transfusion burden and decreases related iron removal costs and/or 
other potential harm of iron overload (for example, increased risk of 
transformation to AML). MDS with an SF3B1 mutation is proposed as a 
distinct entity by the International Working Group for the Prognosis of 
MDS and is associated with anaemia, myelodysplasia with or without 
presence of ring sideroblasts and a blast count <1% and <5% in the blood 
and bone marrow, respectively117.

Mutations in U2AF1 are associated with a poor prognosis118,119 and 
typically occur at amino acids S34 and Q157 within zinc finger domains, 
causing a selection bias at 3′ splice sites120. U2AF1 mutations result in 
mis-splicing of the autophagy gene ATG7, resulting in inhibition of 
autophagy and leading to mitochondrial dysfunction and genome 
instability. These effects predispose cells to additional mutations that 
may result in transformation121. Some studies suggest that mutations in 
U2AF1 and SF3B1 induce the expression of targetable ‘active’ isoforms 
of IRAK4 and provide a genetic link to the activation of innate immune 
signalling observed in MDS122,123.

Individuals with ZRSR2 mutations typically present with isolated 
neutropenia and increased bone marrow blasts and have a high risk 
of transformation to AML124. ZRSR2 is involved in assembly of the 
minor (U12-dependent) spliceosome. Short hairpin RNA-mediated 
knockdown of ZRSR2 results in impaired splicing of U12-type introns. 
Furthermore, RNA sequencing of bone marrow cells from individu-
als with MDS indicates loss of ZRSR2 expression in those with ZRSR2 
mutation, resulting in increased mis-splicing125. ZRSR2-deficient cells 
also have a reduced proliferation potential and a marked decrease of 
burst-forming unit–erythroid cells and an increase of colony-forming 
unit–macrophages in vitro125.

Splicing factor mutations are typically mutually exclusive but 
single-cell analyses indicate that ~1% of patients with MDS have two 
or more splicing factor mutations126. These double splicing factor 
mutations are characterized by selection against the most common 
alleles (that is, SF3B1K700E and SRSF2P95H/L/R) and for less common alleles 
(that is, SF3B1 non-K700E mutations, rare amino acid substitutions at 
SRSF2P95 and combined U2AF1S34/Q157 mutations). This allele-specific 
difference is crucial in regulating the effects of these mutations on 
splicing factor function126.

As discussed above, the two most common sites of mutations in 
MDS are epigenetic regulator genes and RNA splicing genes. How these 
interact is unknown but may be central to the pathogenesis of some 
cases of MDS. Studies suggest that the co-occurrence of SRSF2 and IDH2 
mutations results in increased self-renewal and, in mice, a phenotype 
different from that of either mutation alone127. Functional study data 
indicate that SRSF2 and IDH2 double-mutant cells have aberrant splic-
ing and decreased expression of INTS3, which drives the development 
of myeloid cancers in concert with IDH2 mutation and with abnor-
mal binding of SRSF2 to cis-elements in the INTS3 mRNA, resulting in 
increased INTS3 methylation and, as a consequence, reduced INTS3 
expression127. SRSF2 mutations also promote leukaemia development 
in IDH2-mutated cells127.

Diagnosis, screening and prevention
Clinical features
MDS was previously termed il morbo di Guglielmo (Di Guglielmo dis-
ease), refractory anaemia, pre-leukaemia, idiopathic acquired sidero-
blastic anaemia and smouldering acute leukaemia128–130. The modern 
classifications of MDS started with 2 categories of ‘dysmyelopoietic 
syndromes’ in the 1976 French–American–British (FAB) classification131, 
5 categories of ‘myelodysplastic syndromes’ in the 1982 FAB classifica-
tion132, 10 MDS categories in the third edition of the WHO Classification 
(1999–2001)133,134, 11 MDS categories in the fourth edition of the WHO 
Classification (2008)135, and the integration of haematological, histo-
logical, cytogenetic and molecular covariates in the updated fourth 
edition of the WHO Classification (2016)136. The 2022 fifth edition of 
the WHO Classification distinguishes 8 subtypes of MDS, grouped as 
3 subtypes that are defined by genetic abnormalities (MDS-5q, MDS-
SF3B1 and MDS-biTP53) and 5 subtypes that are defined histologically 
(MDS-LB, MDS-h and three MDS-IB subtypes). Of note, the diagnosis and 
category of MDS is based on the proportion of immature myeloid cells 

Fig. 4 | Frequent mutations affecting transcription, erythropoiesis, and DNA 
repair and conformation in MDS. a, DNA methylation and chromatin modifica-
tion abnormalities in myelodysplastic syndromes (MDS). An impaired tricarbo-
xylic acid (TCA) cycle as a result of mutations in IDH1 or IDH2 leads to epigenetic 
changes that alter transcription. b, Del(5q) results in aberrant erythropoiesis 
and DNA repair in MDS by dysfunctional p53 function. c, Mutations in multiple 
transcription factor (TF) genes (RUNX1 is depicted as an example) can result in 
aberrant haematopoiesis aspects (such as decreased gene expression) in MDS. 
d, Mutations in cohesion complex-related genes (such as STAG2) and formation 

of R-loop/DNA damage response (DDR) cause altered transcriptional program-
ming in MDS. 2-HG, 2-hydroxyglutarate; C, carboxyl terminus; CK1α, casein 
kinase 1 isoform-α; CLP, common lymphoid progenitor; CMP, common myeloid 
progenitor; GMP, granulocyte-monocyte progenitor; HSC, haematopoietic 
stem cell; MPP, multipotent progenitor; N, amino terminus; RNAPII, RNA 
polymerase II; ssDNA, single-stranded DNA. Part a adapted with permission 
from ref.99, Elsevier. Part b adapted from ref.108, Springer Nature Limited. Part d 
adapted with permission from ref.99, Elsevier, and from ref.100, Springer Nature 
Limited.
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(myeloblasts) in the bone marrow (≥20% myeloblasts in AML and <20% 
myeloblasts in MDS) and in peripheral blood, the extent of dysplasia, 
and the presence of ring sideroblasts11.

The median age at diagnosis for MDS is 70 years but diagnosis 
can occur at any age4. The usual presentation involves signs and/or 
symptoms resulting from bone marrow failure, including fatigue, 
pallor, infection and bleeding. Laboratory abnormalities include low 
haemoglobin and granulocyte and/or platelet concentrations. Some 
individuals with MDS are diagnosed based on abnormalities detected 
on a routine blood examination or one performed for an unrelated med-
ical condition. An enlarged spleen and lymph nodes are uncommon in 
MDS and should lead one to consider other diagnoses. Some individu-
als with MDS improve when given immunosuppressive drugs such as 
anti-thymocyte globulin or cyclosporine. Some of these cases may 
have been aplastic anaemia rather than MDS but this is controversial  
as some data suggest efficacy of these drugs in MDS.

MDS is uncommon in children, with an incidence of 1–2 cases per 
million population11,137. The disease is biologically distinct from MDS 
in adults. It is often associated with an inherited bone marrow failure 
syndrome and germline mutations, such as GATA2 and DDX41, instead 
of acquired somatic mutations (discussed below). Differential diagnoses 
for MDS in children include infection, juvenile myelomonocytic leukae-
mia, myeloid proliferation associated with trisomy 21 (Down syndrome), 
and hereditary bone marrow failure syndromes such as Fanconi anaemia, 
Shwachman–Diamond syndrome and Diamond–Blackfan anaemia.

Histology
A bone marrow aspirate and/or biopsy is essential for accurate diagnosis 
and classification of MDS. Increased bone marrow cellularity is common 
in MDS, although hypocellularity is also consistent with a diagnosis of 
MDS. The fifth edition of the WHO Classification of myeloid neoplasms 
requires that 10% of cells have abnormal histology within a lineage to 
be designated as dysplasia11.

Red blood cell (RBC) abnormalities are common in MDS. Erythro-
cytes tend to have a normal or high mean corpuscular volume. Other 
typical RBC changes include basophilic stippling, multinucleation, 
nuclear budding, karyorrhexis (nuclear fragmentation), irregular chro-
matin condensation, and asynchronous maturation of the nucleus and 
cytoplasm. Ring sideroblasts characterize some subtypes of MDS90,117.

Abnormalities in neutrophils and granulocytes are also common 
in MDS, including hypogranular granulocytes and pseudo-Pelger–Huët 
anomaly (bilobed instead of the normal trilobed nuclei in neutro-
phils)138. Excess myeloblasts may be present, with a phenotype similar 
to that in AML (for example, frequent infections, skin looking pale or 
‘washed out’, tiredness, and unusual and frequent bleeding such as 
bleeding gums or nosebleeds). A left shift in the differential WBC count 
should raise the prospect of MPN. Accurate enumeration of myeloblasts 
is essential to distinguish MDS from AML. Abnormal localization of 
blast clusters in bone marrow slides sometimes complicates analyses. 
We discuss arbitrariness and related considerations below.

Megakaryocyte changes consist of widely separated nuclear lobes 
or small size with absent nuclear lobation or hypolobation, including 

micro-megakaryocytes, mononuclear megakaryocytes, dumbbell-
shaped nuclei, hypersegmentation and multinuclearity with multiple 
isolated nuclei. Giant platelets and platelet anisotropy are also common 
in MDS139.

Immune phenotype
The value of analysing data on immune phenotype in MDS is contro-
versial and, if used, should be integrated with histological, cytogenetic 
and molecular data for an accurate diagnosis. Abnormalities include 
overexpression, underexpression, aberrant and/or asynchronous 
antigen expression of myeloid cell markers and lineage infidelity (loss 
of original identity in differentiated haematopoietic cells and either 
de-differentiation to an earlier stage or transdifferentiation to a dif-
ferent cell type in the same or an entirely different haematopoietic 
lineage). Some studies suggest that the immune phenotype can be 
used to distinguish MDS from other causes of bone marrow failure but 
this is controversial140,141.

Cytogenetic analysis
Cytogenetic changes are considered ‘macrostate’ changes that reflect 
genetic abnormalities, which are ‘microstate’ changes. Multiple tech-
niques for detecting chromosomal abnormalities in MDS have been 
developed in past decades, among which metaphase cytogenetics or 
karyotyping, fluorescence in situ hybridization, spectral karyotyping, 
genotyping, and array-based comparative genomic hybridization have 
been widely used in clinical practice. Diagnosis of MDS is sometimes 
supported by conventional cytogenetic analyses (for example, karyo-
typing and fluorescence in situ hybridization), which can inform about 
clonality but is less sensitive than clonality defined by next-generation 
sequencing. Abnormalities associated with MDS are divided into five 
risk categories (Table 4). Clonal cytogenetic abnormalities associated 
with a very good prognosis include del(Y) and del(11), which occur 
in <5% of MDS cases. Cytogenetic abnormalities associated with a 
favourable prognosis include normal cytogenetics, del(5q), del(12p), 
del(20q) and the presence of >1 abnormality including del(5q), which 
are detected in about 70% of individuals with MDS. Cytogenetic abnor-
malities associated with an intermediate prognosis include del(7q), 
trisomy 8, trisomy 19, isochromosome 17q (loss of 17p and duplication 
of 17q), and any other single or double chromosomal aberration, which 
occur in 15–20% of MDS cases. Cytogenetic abnormalities associated 
with an unfavourable prognosis include del(7), inv(3), t(3q), del(3q), >1 
abnormality including del(7//7q), and the presence of three abnormali-
ties, which occur in about 5% of cases142,143. Cytogenetic abnormalities 
associated with very poor outcomes include more than three abnor-
malities, which are detected in 5–10% of individuals with MDS142,143. None 
of these cytogenetic abnormalities is specific to MDS. For example, 
many occur in individuals with AML and other haematological cancers 
(for example, myeloma and lymphoma) and related diseases discussed 
above (PNH, aplastic anaemia and CCUS). Furthermore, cytogenetic 
analysis does not capture the full extent of genetic changes in MDS. 
For example, individuals with complex cytogenetic abnormalities 
often have a TP53 mutation144–148, ~60% of individuals with MDS and 

Fig. 5 | Frequent mutations in RNA splicing, immune function and metabolism 
in MDS. a, Mutations in RNA splicing factors alter exon inclusion, resulting in 
mis-splicing of pre-mRNA (right panel) and leading to the production of aberrant 
proteins with potentially pro-oncogenic functions or effects. b, Immune factors, 
such as dysfunctional immune cells, skewed cytokine production and/or stromal 
cell disruption, alter the myelodysplastic syndrome (MDS) microenvironment,  
potentially contributing to tumour development and progression. c, Metabolic 
dysregulation of haematopoietic stem cells (HSCs) and niche cells might contribute 
to MDS development. d, Deregulation of innate immune, inflammatory and other  

signalling pathways might contribute to MDS development. 2-HG, 2-hydroxyglu-
tarate; 3′ss, 3′ splice site; BPS, branch point sequence; DAMPs, damage-associated 
molecular patterns; ESE, exonic splicing enhancer; ESS, exonic splicing silencer; 
FAO, fatty acid oxidation; hnRNPs, heterogeneous nuclear ribonucleoproteins;  
NK, natural killer; OXPHOS, oxidative phosphorylation; PAMPs, pathogen- 
associated molecular patterns; Py-tract, pyrimidine tract; ROS, reactive oxygen 
species; snRNPs, small nuclear ribonucleoproteins; TF, transcription factor;  
Treg, regulatory T. Part c adapted from ref.86, CC BY 4.0 (https://creativecommons.org/ 
licenses/by/4.0/). Part d adapted from ref.87, Springer Nature Limited.
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normal cytogenetics have mutations detected by next-generation 
sequencing77,78, and copy number alterations are common in MDS149.

Prognostic risk models and scores
As discussed earlier, MDS includes heterogeneous genotypes and 
phenotypes with diverse aetiologies, pathogeneses, pathophysiolo-
gies and prognoses, requiring different therapeutic strategies with 
different target end points such as reversing anaemia or preventing 
transformation to AML. Consequently, developing an accurate prog-
nostic score is challenging. Nevertheless, several such scores have been 

developed and are widely used to predict outcomes and direct thera-
peutic interventions, including the International Prognostic Scoring 
System (IPSS)150, IPSS-R142, and systems that use artificial intelligence 
or machine learning algorithms to incorporate molecular mutations 
into prognostication151 such as the Personalized Prediction Model and 
the IPSS-Molecular152. Furthermore, the WHO Classification-based 
Prognostic Scoring System (WPSS) is also used153,154, although not as 
widely as IPSS and IPSS-R. Covariates included in these systems and 
risk cohorts are displayed in Table 5.

The IPSS uses bone marrow blast percentage, cytogenetics and 
numbers of cytopenias to define four risk cohorts: low, intermediate-1, 
intermediate-2 and high risk150. The IPSS-R adds more precisely defined 
haemoglobin, platelet and neutrophil concentrations to identify five 
risk cohorts: very low, low, intermediate, high and very high risk142.  
A comparison revealed differences in the concordance (C)-statistic for 
IPSS and IPSS-R for survival (0.69, 95% CI 0.68–0.70 versus 0.72, 95% CI 
0.71–0.73; P <0.001, respectively) and transformation to AML (0.74, 95% 
CI 0.73–0.76 versus 0.76, 95% CI 0.75–0.78; P <0.001, respectively)142. 
In heterogeneous disorders such as MDS, the increase of concordance 
from 0.69 to 0.72 is clinically relevant. Despite the IPSS-R being devel-
oped and validated using untreated populations, this system has the 
prognostic ability to discriminate among subsets of patients treated 
and at lower risk155,156. Both IPSS and IPSS-R have shortcomings: they 
were developed and validated in untreated individuals with MDS, are 
not dynamic and do not always accurately predict response to therapy.

Like the IPSS-R, the WPSS adds WHO histology and the require-
ment for RBC transfusion to define five cohorts. All these prognostic 
scoring systems are fundamentally similar but with some claimed dif-
ferences. In multivariable analyses, the WPSS is a more accurate survival 
predictor compared with the IPSS but this conclusion needs valida-
tion157. Another study comparing prediction accuracies of the WPSS 
and IPSS-R reported a high correlation (Kendall tau = 0.72; P <0.001). 
The Dxy is a concordance coefficient varying between −1 and 1, with 0 
representing no predictive power and 1 representing perfect concord-
ance of ascribed risk. Dxy values of the WPSS and IPSS-R for survival are 
0.43 and 0.46, respectively, and 0.53 and 0.54 for AML transformation, 
respectively. These data indicate no substantial difference in prediction 
accuracies of different prognostic models and scores.

However, there are discordances between these prognostic scores 
in identifying persons with lower-risk MDS. The WPSS but not the IPSS 
identifies a cohort of persons with a very low risk of MDS progres-
sion who do well with no intervention. Another discordance is that 
histology-defined myelodysplasia is subjective, often not replicable, 
and does not correlate well with the severity of cytopenias or with bone 
marrow blast percentage. Additionally, haemoglobin concentration 
<90 g/l in men and <80 g/l in women is given greater predictive weight 
in the WPSS than in the IPSS-R. The WPSS can identify persons in a 
very-low-risk cohort but adding cytogenetics data does not increase 
prediction accuracy because unfavourable cytogenetics are rare in this 
cohort. The relative prognostic weight assigned to high-risk cytogenet-
ics is greater in the WPSS than in the IPSS158. Importantly, the IPSS and 
IPSS-R were developed and validated in untreated persons with MDS, 
are not dynamic and do not accurately predict therapeutic responses. 
The integration of machine learning and artificial intelligence has been 
reported to improve accuracy but needs validation159–161.

Most of these scoring systems are based on data from study or 
registry participants and may not have similar accuracy in real-world 
populations. A large population-based study compared prognostic 
accuracies of the IPSS, IPSS-R and WPSS for survival and risk of AML 

Table 3 | Mutation frequency, prognostic impact of mutation 
topography and targeted drugs in MDS

Mutated 
genes

Frequency Prognostic impact Targeted 
therapiesa

Epigenetic regulators

TET2 20% No impact on survival, mutant 
TET2 may predict better 
response to HMD

HMD

DNMT3A 5–10% Unfavourable indicator, 
especially in SF3B1 
co-mutated MDS-RARS

HMD

IDH1 and 
IDH2

5–10% Unfavourable Ivosidenib and 
enasidenib

Chromatin modifiers

ASXL1 10–20% Unfavourable BAP1 inhibitor

EZH2 10% Unfavourable Tazemetostat

Transcription regulators

RUNX1 15% Unfavourable BET inhibitor or 
Menin inhibitors

ETV6 2–5% Unfavourable NA

BCOR 5% Unfavourable NA

Cohesin complex components

STAG2 <10% Unfavourable NA

CTCF <5% Unfavourable NA

SMC1A <5% Unfavourable NA

Spliceosome components

SF3B1 20% in MDS 
and 65% in 
MDS-RS

Favourable Luspatercept or 
IRAK inhibitors

SRSF2 10–20% Unfavourable NA

U2AF1 <10% Unfavourable IRAK inhibitors

ZRSR2 <10% Unfavourable NA

Signal transduction genes

JAK2 50% in RARS-T Unfavourable Ruxolitinib

KRAS 2–5% Unfavourable Antroquinonol

CBL 2–5% Unfavourable NA

DNA repair genes

TP53 5–10% Unfavourable Eprenetapopt

HMD, hypomethylating drug; MDS, myelodysplastic syndromes; MDS-RS, MDS with  
ring sideroblasts; MDS-RARS, MDS with refractory anaemia and ring sideroblasts;  
NA, not available; RARS-T, refractory anaemia with ring sideroblasts associated with  
marked thrombocytosis. aNote that most targeted agents are of unproven impact.



Nature Reviews Disease Primers |             (2022) 8:74 13

0123456789();: 

Primer

transformation22. The IPSS-R was more accurate than the IPSS (P < 0.001) 
and the WPSS (P = 0.05). The WPSS was more accurate than the IPSS 
(P = 0.07). The IPSS-R was more accurate than the IPSS and the WPSS 
in individuals ≤70 years of age22. Based on these data, we recommend 
using the IPSS-R in most instances. However, we emphasize that the 
C-statistics associated with these prognostic scores are low, implying 
considerable inaccuracy, especially when used in individuals with MDS.

None of these prognostic scores considers response to interven-
tions, as is done in Markov and Bayesian modelling. For example, indi-
viduals with low-risk MDS and anaemia at diagnosis sometimes receive 
erythropoietin, lenalidomide and/or luspatercept. Some respond 
whereas others do not, but these interventions eventually fail in most 
patients. However, prognostic risk scores do not account for these 
data. These data have been used to improve prediction accuracy, such 
as by Markov modelling162, with this analysis indicating that delaying 
a bone marrow transplant (BMT) for low-risk and intermediate-1-risk 
MDS and immediate BMT for intermediate-2-risk and high-risk MDS is 
associated with maximal life expectancy.

Another strong prognostic co-variate excluded from these prog-
nostic risk scores is the adverse impact of MDS that is considered to be 
related to therapy22,163. However, as we discuss elsewhere, this attribu-
tion is probabilistic and entails considerable uncertainty163,164. As such, 
caution is necessary when using this designator to estimate prognosis.

More recently, the integration of clinical, histological and molecu-
lar data using artificial intelligence has improved the accuracy of the 
IPSS and IPSS-R and can be applied throughout a patient’s disease 
course159–161. These systems continue to include clinical, histological  
and cytogenetics data identified as prognostic in the IPSS and IPSS-R and  
add mutation topography. Interestingly, optical genome profiling for 
MDS reveals cryptic aberrations that are used to predict prognosis and 
even to help identify therapies165.

The Personalized Predictive Model was developed based on data 
from 1,471 individuals and validated in 465 individuals treated in a clini-
cal trial and/or receiving a BMT151. Covariates associated with survival 
were age, blood cell concentrations, including bone marrow blast 
percentage, cytogenetics and number of mutations.

The IPSS-M was developed in a cohort of nearly 3,000 individuals 
and validated in a cohort of 754 individuals. Important survival covari-
ates include blood cell concentrations, bone marrow blast percentage, 
IPSS-R cytogenetic risk categories, and mutations in 16 ‘main effect’ 
genes and 15 ‘residual genes’. Biallelic TP53 mutations as well as FLT3 and 
MLL-partial tandem duplication mutations are adverse risk covariates. 
The IPSS-M model identifies the need to distinguish genetic subsets of 
SF3B1 mutations by co-mutation pattern. IPSS-M risk cohorts range 
from very low risk, with a median predicted survival of 10.6 years, to 
very high risk, with a median predicted survival of 1 year.

Screening
There are no screening recommendations for MDS in any clinical prac-
tice guideline or consensus statement, or from the US Preventative 
Diseases Task Force. However, screening is sometimes performed in 
high-risk populations, such as in individuals who are occupationally 
exposed to hazardous chemicals (for example, benzene) or ionizing 
radiation and individuals with cancer who have been previously treated 
with DNA-damaging drugs and/or radiation therapy. Some physicians 
recommend screening for individuals with CHIP detected in settings 
unrelated to signs or symptoms associated with a haematological 
abnormality such as participants in genetic screening programmes; 
whether this is of value has not been confirmed. Screening for MDS is 

sometimes appropriate in individuals with the hereditary haematologi-
cal disorders discussed earlier and in those with a family history of these 
disorders, MDS or related haematopoietic disorders.

Prevention
The only preventive measure to reduce the risk of developing MDS is 
avoidance of exposures associated with increased risk such as ciga-
rette smoking, some chemicals and ionizing radiation. The potential 
future risk of developing MDS may affect the decision of how to treat 
some cancers, such as Hodgkin lymphoma and breast cancer, because 
of the frequent application of radiation therapy in these diseases.

Management
Therapeutic goals and strategies
The most important consideration in deciding if, when and what 
therapy an individual with MDS should receive is to define the thera-
peutic goal. Some individuals do not require therapy because their 
symptoms are mild, because their cytopenias are not severe, and/or 
because they are older and/or with important comorbidities that are 
more likely to bring them harm than MDS. Other individuals might 
benefit from a therapeutic intervention but are not appropriate can-
didates because the anticipated benefit-to-risk ratio is unfavourable. 
In addition, there are people in whom the therapeutic goal is to reverse 
cytopenias, such as anaemia, granulocytopenia and/or thrombocyto-
penia, and improve QOL and not to eradicate MDS. These interventions 
may or may not be successful or might succeed only transiently. Finally, 
there are people for whom the therapeutic goal is to eradicate MDS, 
either because the aforementioned strategies are not working and/or 
because the goal is to decrease the likelihood of transformation to AML.

MDS can be viewed in several ways. One is that some forms of MDS 
are similar to conditions in which immature cells predominate. As such, 
a potential therapeutic approach is to use drugs designed to encour-
age differentiation, as is done in acute promyelocytic leukaemia, or to 
prevent transformation to AML166–168, a potential mechanism of action 
of hypomethylating drugs.

Therapeutic goals for lower-risk MDS include improving disease-
related symptoms, decreasing the frequency of RBC and platelet trans-
fusions, and improving QOL. It is important to weigh any potential 
adverse impact of therapy against consequences of the disease, the 

Table 4 | Characteristics of IPSS-R risk cohorts of MDSa

Risk cohort Cytogenetic abnormality Frequency Median 
survival 
(years)

Very good Del(11q), del(Y) <5% 5.4

Good Normal, del(5q) alone or with one 
other anomaly, del(12p) or del(20q)

65–75% 4.8

Intermediate Del(7q), trisomy 8, trisomy 19, 
isochromosome 17q, and any other 
single or double abnormality not listed

15–20% 2.7

Poor Abnormal 3q, monosomy 7 and 
del(7q), double abnormalities 
including monosomy 7 and del(7q), 
and complex cytogenetics with three 
abnormalities

5% 1.5

Very poor Complex cytogenetics with more than 
three abnormalities

5–10% 0.7

IPSS-R, revised International Prognostic Scoring System. aData from refs.142,143,150.
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time and cost related to receiving therapy, and the estimated likelihood, 
magnitude and robustness of efficacy. Therapeutic goals for higher-
risk MDS are similar but also aim to prevent or delay transformation to 
AML and increase survival. Achieving these goals requires a delicate, 
often imperfect balance between benefits (real or perceived) and 
therapy-related adverse events. The balance between estimated risks 
and benefits is different in individuals with higher-risk MDS given their 
estimated shorter life expectancy.

Therapeutic options for MDS comprise supportive care (for exam-
ple, transfusion), including human DNA recombination technology-
based, molecularly cloned haematopoietic growth factors to alleviate 
pancytopenia, luspatercept to improve erythropoiesis, hypomethylat-
ing drugs to target the highly methylated genome status in MDS169,170, 
immune modulators such as lenalidomide, chemotherapy drugs, low-
dose cytarabine and the potential curative therapy allogeneic HCT. As 
discussed above, some individuals with seemingly mild MDS may be can-
didates for immunosuppression52. Other therapies being studied include 
immune-checkpoint inhibitors, such as PD1, PDL1 and CTLA4, anti-CD47 
antibodies, and BCL-2 inhibitors171. Most treatment algorithms, such 
as those from National Comprehensive Cancer Network (NCCN), the 
European Society for Medical Oncology and several textbooks, suggest 
classifying individuals with MDS into lower-risk and higher-risk cohorts 
that require different and/or personalized therapeutic strategies172–175.

Therapy for lower-risk MDS
The therapeutic goal in people with lower-risk MDS is to improve hae-
matopoiesis and/or QOL (Fig. 6). Interventions are largely based on 
the dominant cytopenia or cytopenias. People with severe anaemia 

typically receive molecularly cloned haematopoietic growth factors 
such as erythropoietin176. People with del(5q) and ring sideroblasts typi-
cally receive lenalidomide and/or luspatercept, and those with granu-
locytopenia may receive molecularly cloned myeloid growth factors 
such as granulocyte–colony-stimulating factor (G-CSF) or granulocyte– 
macrophage colony-stimulating factor (GM-CSF). Patients with 
hypoplastic bone marrow and/or multiple cytopenias may receive 
cyclosporine and/or anti-thymocyte globulin under the hypothesis of 
an immune basis or hypomethylating drugs, while those with severe 
thrombocytopenia might receive molecularly cloned thrombopoietin 
analogues such as romiplostim or eltrombopag. HCT is rarely considered 
in persons with lower-risk MDS and only after other interventions have 
failed. Participation in clinical trials of new therapies and/or support-
ive care are options throughout the spectrum of lower-risk MDS. Iron-
chelating drugs, such as deferoxamine, are a controversial intervention 
in terms of a survival benefit in people with low-risk MDS who are likely to 
live sufficiently long to receive many RBC transfusions. People in whom 
there is uncertainty of whether the correct diagnosis is mild aplastic 
anaemia or lower-risk MDS should receive a trial of immunosuppressive 
therapy with anti-thymocyte globulin and/or cyclosporine52.

Erythropoiesis-stimulating agents (ESAs), which promote earlier 
stages of erythropoiesis, have been commonly used in lower-risk MDS 
for decades. In a 2007 study of 1,587 individuals enrolled in clinical tri-
als with standardized response criteria, the anaemia response rate was 
40%177. A randomized, blinded, placebo-controlled trial of darbepoetin 
in 147 individuals performed in 2017 reported an anaemia response 
rate of 15% with darbepoetin (increasing to 35% with longer follow-up) 
compared with 0% with placebo178.

People with anaemia with ring sideroblasts and/or an SF3B1 muta-
tion179 often receive luspatercept, which improves anaemia by reducing 
SMAD2 and SMAD3 signalling in late erythropoiesis180. In a randomized, 
blinded, placebo-controlled study of luspatercept, RBC transfusion 
independence occurred in ~40% of patients and lasted a median of  
8 weeks181.

Lenalidomide is approved in many countries to treat anaemia 
in people with del(5q). In a phase III trial of lenalidomide, the RBC 
transfusion-independence response rate was ~50%, with a median 
response duration of >2 years. Grade 3 or 4 neutropenia occurred in 
>70% of participants and thrombocytopenia occurred in >30% of par-
ticipants. Patients with severe thrombocytopenia were more likely to 
respond to the drug182.

Romiplostim and eltrombopag (a thrombopoietin analogue and 
thrombopoietin receptor agonist, respectively) are growth factor 
drugs that increase platelet concentrations183–185. A randomized study 
of romiplostim in individuals with platelet concentrations <20 × 109/l 
reported a marked decrease in platelet transfusions185. Another rand-
omized study of eltrombopag reported a 47% platelet response rate 
in those receiving eltrombopag184. In both studies, the rate of AML 
transformation was increased, especially in people with excess myelo-
blasts; therefore, romiplostim and eltrombopag should be avoided in 
this setting.

The hypomethylating agents azacitidine, decitabine and decitabine/ 
cedazuridine are sometimes given to people with multiple cytope-
nias. Their precise mechanisms of action are unknown but their bio-
chemical effects include the inhibition of DNA methyltransferase, 
thereby favouring differentiation and cytotoxicity186. Single-arm 
studies report complete or partial responses or haematological 
improvement per international working group criteria of 30–40%187, 
with a median response duration of 1–1.5 years188,189. People with 

Table 5 | Prognostic scoring systems for MDS

Classification or 
score

Covariates Survival 
prediction 
accuracy

AML 
transformation 
prediction 
accuracy

 IPSS150 Bone marrow blast 
percentage; numbers of 
cytopenias; cytogenetic 
analysesa

Fair Fair

IPSS-R142 Bone marrow blast 
percentage; haemoglobin 
concentration; platelet 
concentration; neutrophil 
concentration; cytogenetic 
riska

Good Good

IPSS-M152 Bone marrow blast 
percentage; minimum 
platelet concentration; 
haemoglobin 
concentration; IPSS-R 
cytogenetic category; gene 
main effects (17 variables, 
16 genes); gene residuals  
(1 variable, 15 genes)

Good Good

WHO 
Classification-
based Prognostic 
Scoring 
System153,154

WHO category; cytogenetic 
riska; haemoglobin <90 g/l 
in men or <80 g/l in women

Good Good

AML, acute myeloid leukaemia; IPSS, International Prognostic Scoring System; IPSS-M, 
IPSS-Molecular; IPSS-R, revised IPSS; MDS, myelodysplastic syndromes. aWe use the term 
cytogenetic rather than karyotype as this more correctly reflects modern practices such as 
fluorescence in situ hybridization.



Nature Reviews Disease Primers |             (2022) 8:74 15

0123456789();: 

Primer

multiple cytopenias also sometimes receive immunosuppressive 
drugs such as anti-thymocyte globulin and cyclosporine, with stud-
ies finding a response rate of ~30% and a median response duration of  
1–1.5 years190,191.

The use of iron-chelating drugs in highly RBC-transfused persons 
with relatively long expected survival is controversial. A randomized, 
placebo-controlled trial of deferasirox in individuals with iron over-
load reported improvement in event-free survival and that the drug 
was safe192.

In people with IPSS-R intermediate risk, the therapeutic choice 
is influenced by age, Eastern Cooperative Oncology Group (ECOG) 
performance score, comorbidities, cytogenetics, mutation topog-
raphy and other covariates95,96,193,194 (Fig. 7). Individuals with lower 
IPSS-R scores failing prior interventions are sometimes operationally 
defined as being at higher risk. We propose the following: no inter-
vention in asymptomatic people until symptoms appear or disease 
progression occurs; administration of erythroid-stimulating drugs 
in those with symptomatic anaemia or risk of iron overload and serum 
erythropoietin concentration <500 U/l; consideration of luspatercept 
in those failing with erythroid-stimulating drugs and who have ring 
sideroblasts and/or del(5q) and lenalidomide in those failing with 
erythroid-stimulating drugs and in people with del(5q), unless they 
have a TP53 mutation195; consideration of hypomethylating drugs  

and/or immunosuppression in those failing with lenalidomide; and 
consideration of immunosuppression, hypomethylating drugs, lena-
lidomide or HCT (see below), or participation in a clinical trial in people 
with an erythropoietin concentration ≥500 U/l. There is an important 
role for supportive care in individuals for whom it is appropriate, such 
as those unwilling to receive drugs or who have progression-related 
symptoms requiring intervention.

Consensus guidelines and strength of evidence for interventions in 
lower-risk MDS are summarized in the NCCN Guideline Version 3.2022 
Myelodysplastic Syndromes196.

Therapy for higher-risk MDS
The therapeutic goal for individuals at higher risk (IPSS intermediate-2 
risk and high risk; IPSS-R intermediate risk, high risk or very high risk; 
or WPSS high risk or very high risk) in most guidelines is to delay dis-
ease progression, prevent or delay AML transformation, prolong life, 
improve QOL and, if possible, attempt cure (Fig. 6). Hypomethylating 
drugs, anticancer drugs and HCT are the modalities most often con-
sidered. For example, azacitidine is one of the major hypomethylating 
drugs approved by the FDA and the EMA for MDS treatment. A phase III  
trial (NCT00071799) reported that azacitidine increased survival by  
9 months compared with best supportive care, low-dose cytarabine or 
intensive chemotherapy (survival HR 0.58, 95% CI 0.43–0.77)197. A phase II  
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Fig. 6 | Proposed algorithm for the treatment of MDS. The algorithm depicts 
the treatment recommendations for lower-risk and higher-risk myelodysplastic 
syndromes (MDS). aGood-risk karyotypic abnormalities: del(11q), del(Y), normal, 
del(20q), del(5q) alone or with one other anomaly, del(12p). bGood-risk molecular 
abnormalities: SF3B1 mutation. cPoor-risk karyotypic abnormalities: abnormal 3q, 
monosomy 7, double abnormality including del(7)/del(7q), complex karyotypes 
with three or more abnormalities. dPoor-risk molecular abnormalities: TP53, 

RUNX1, EZH2, ASXL1 and ETV6 mutations. ATG, anti-thymocyte globulin; CSA, 
cyclosporin; EPO, erythropoietin; ESA, erythropoiesis-stimulating agent; G-CSF, 
granulocyte colony-stimulating factor; HCT, haematopoietic cell transplantation; 
HMD, hypomethylating drug; IPSS, International Prognostic Scoring System; 
IPSS-R, Revised IPSS; mTP53, mutated TP53; mSF3B1, mutated SF3B1; QOL, quality of 
life; RBC-TD, red blood cell transfusion dependence; TPO, thrombopoietin; TPO-RA, 
thrombopoietin receptor agonist. Adapted with permission from ref.175, Elsevier.
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trial (NCT01462578) reported that azacitidine therapy prevented or 
substantially delayed relapse in individuals who were positive for mini-
mal residual disease after achieving a histological complete remission 
following intensive chemotherapy or HCT but this study lacked a con-
current placebo control198. Analyses of the Grupo Español de Síndromes 
Mielodisplásicos (GESMD) and Groupe Francophone des Myélodyspla-
sies (GFM) observational data bases reported a time-dependent benefit 
of azacitidine therapy in individuals with high-risk MDS and del(7/7q) 
or with complex cytogenetics compared with best supportive care199. 
The sum of these data suggests the safety and efficacy of azacitidine in 
this population. However, real-world data suggest that the effect size 
might be smaller than that reported in clinical trials197,200–202.

A phase III trial compared low-dose decitabine with best supportive 
care in older individuals with higher-risk MDS203. There was no sub-
stantial improvement in survival yet better progression-free survival 
and a lower risk of AML transformation were observed. Similar data are 
reported from another phase III study (NCT00043381)204. Whether decit-
abine significantly increases survival is controversial and may reflect trial 
design rather than different efficacies of azacitidine and decitabine203,204. 
However, it is important to acknowledge that the mechanisms of action 
of these drugs differ. Decitabine acts only on DNA whereas the predomi-
nant effects of azacitidine are on RNA205,206. Two studies reported that 
decitabine is effective in individuals with TP53 mutation207,208. Some 
studies claim that hypomethylating drugs are a bridge to HCT but these 
data indicate that a bridge treatment as a prerequisite for HCT may not 
be necessary162,209–211. Decitabine/cedazuridine, a combination of decit-
abine and the cytidine deaminase inhibitor cedazuridine, is a new oral 
form of hypomethylating drug that was approved for MDS treatment by 
the FDA based on pharmacokinetic and pharmacodynamic data without 
a comparative clinical trial (see below)189.

Haematopoietic cell transplantation
There are three fundamental questions regarding HCT for MDS: who, 
if anyone, should receive HCT; when should the procedure take place; 
and which approach is most appropriate?

Allogeneic HCT is the only cure for MDS212–223. However, HCT is 
performed in fewer than 10% of patients with MDS for diverse reasons, 
including inaccurately estimating prognosis without or with HCT, older 
age, frailty, comorbidities related or unrelated to MDS (often con-
founded), and financial and other considerations. Improved supportive 
care, development of reduced-intensity conditioning (RIC) regimens 
preferred in older persons, increased donor availability, especially HLA 
haplotype-matched relatives and use of post-HCT cyclophosphamide 
to prevent graft-versus-host disease explain the increasing numbers 
of HCTs for MDS and improved outcomes. However, it is impossible to 
know how much of this improvement results from patient-selection 
biases224. Another reason for the increase in HCT in the USA is a gov-
ernment payment for HCT in individuals >65 years of age. However, 
real-world data on the frequency or outcome of HCT for MDS are few.

Outcomes of HCT vary widely but large observational databases 
from the Center for International Blood and Marrow Research and 
the European Bone Marrow Transplant group report 2–3-year sur-
vival rates of ~50%225–231. Recipient-related covariates that correlate 
with transplantation outcomes include age and the transplantation  
co-morbidity index. MDS-related covariates include pre-transplan-
tation haematological parameters such as platelet concentration 
and blood and/or bone marrow blast percentage, MDS risk category, 
therapy-related MDS (discussed earlier) and mutation topography, 
especially mutations in TP53, RAS and JAK2. Transplantation-related 
covariates include pre-transplantation conditioning intensity (that 
is, the dosage of chemotherapy and radiotherapy before HCT) and 
donor type, with the best outcomes reported among recipients of 
RIC transplants from HLA-identical siblings, HLA-matched unrelated 
donors and HLA haplotype-matched relatives with post-transplanta-
tion cyclophosphamide. Some but not all of these predictive covariates 
are validated (reviewed elsewhere225,227,230). Whether transplantation 
outcomes derived from transplantation registries reflect so-called 
real-world outcomes is unknown.

Deciding which individuals should receive HCT and when is a 
complex issue and there is no correct answer. One widely cited study 
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Fig. 7 | Prognostic factors for different outcomes in intermediate-risk 
MDS. People with Revised International Prognostic Scoring System (IPSS-R) 
intermediate risk are divided into lower-risk (score ≤3.5) and higher-risk 
(score >3.5) cohorts. Covariates, such as age, Eastern Cooperative Oncology 
Group (ECOG) performance score and mutation topography, are prognostic 

and important in therapy decisions. Favourable or unfavourable prognostic 
factors determine whether the therapy regimen for lower-risk or higher-risk 
myelodysplastic syndromes (MDS) should be followed. IPSS, International 
Prognostic Scoring System; WPSS, WHO Prognostic Scoring System.
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used a Markov model to optimize timing, the conclusions of which 
were mostly confirmed in other analyses and in an observational 
study223. A biological assignment trial based on the availability of a 
related or unrelated HLA-identical donor in individuals 50–75 years 
of age with an MDS risk score of IPSS intermediate-2 or higher from 
the Blood and Marrow Transplant Clinical Trials Network (CTN 1102; 
NCT02016781) compared a RIC allogeneic HCT with hypomethylating 
drugs or supportive care227. In an intention-to-treat analysis, leukae-
mia-free survival at 3 years was 36% (95% CI 30–42%) for donor arm 
(received transplant) compared with 21% (95% CI 13–29%; P = 0.003) 
for non-donor arm (received hypomethylating therapy or best sup-
portive care) and adjusted survivals of 50% (95% CI 41–54%) and 27% 
(95% CI 18–36%; P = 0.0001), respectively, were observed. The results 
remained significant in sensitivity analyses that censored individuals 
who died before they could receive a transplant. Although these data 
indicate an advantage of transplantation, many individuals in the non-
transplantation cohort received suboptimal therapy with, for example, 
hypomethylating drugs, and many individuals in the transplantation 
cohort also received these drugs. Furthermore, the outcomes in both 
cohorts remain unsatisfactory. Importantly, a leukaemia-free survival 
benefit was reported only in individuals in the IPSS-R intermediate-
2-risk cohort and a survival advantage was reported only in individu-
als in the IPSS-R high-risk cohort. In addition, these data in selected 
individuals cannot be reliably applied to people with MDS, most of 
whom would not have met the study eligibility criteria. The several MDS 
and transplantation-predictive models and scores are imprecise, with 
C-statistics of about 0.75, implying considerable uncertainty, especially 
at the individual level (discussed earlier). Furthermore, few of these 
models and scores consider an individual’s prior therapy exposure 
and responses or physician and/or potential recipient risk-taking tol-
erance. In several studies, there seemed to be no advantage or even a 
disadvantage with pre-transplantation azacitidine232,233.

Several expert consensus statements and clinical practice guide-
lines address which individuals with MDS are suitable for transplanta-
tion and when it should occur172,230,234–241 (Supplementary Table 2), none 
of which are based on data from randomized controlled trials (the CTN 
1102 study used biological randomization). Above, we discuss our 
reservations regarding the accuracy of such recommendations. We 
think the decision about who should receive a transplant and when 
remains more an art than a science. We suggest that transplantation 
be considered at diagnosis in people with higher-risk MDS, especially 
in those with adverse mutations and in those with lower-risk MDS who 
need therapy but other interventions have failed, especially in those 
with adverse mutations. Risk–benefit analyses are complicated and 
should weigh prognostic covariates and response to prior interven-
tions, in concert with the person’s goals and support network. Most 
survival prognostic factors for conventionally treated MDS also operate 
in transplantations225.

Currently, there are several transplantation-related controversies. 
For example, should people receive hypomethylating drugs before 
or after transplantation? Should mutation topography data be used 
to select appropriate transplantation candidates and/or determine 
transplantation timing? What is the role of pre-transplantation iron-
chelating therapy? None of these questions is definitively answered 
nor are they likely to be.

Approved drugs
Only five drugs are approved by the FDA for the treatment of MDS. Azac-
itidine and decitabine are approved in lower-risk and higher-risk MDS 

including all subtypes (decitabine is not approved for MDS by EMA 
because it did not show a survival benefit in randomized controlled 
trials, discordant from the FDA approval)203. Decitabine/cedazuridine 
is a fixed-dose combination of decitabine and cedazuridine, a cytidine 
deaminase inhibitor that prolongs exposure to decitabine and presuma-
bly decreases genome-wide hypermethylation. Decitabine/cedazuridine 
is approved by the FDA for previously treated or untreated adults with 
de novo and secondary MDS with refractory anaemia, with or without 
ring sideroblasts or with excess blasts, and in IPSS intermediate-1-risk, 
intermediate-2-risk and high-risk cohorts. A randomized phase III phar-
macokinetics and pharmacodynamics study (NCT02103478) reported 
comparable systemic decitabine exposure, de-methylating activity and 
safety in the first two cycles of oral decitabine/cedazuridine compared 
with standard intravenous decitabine in individuals with intermediate-
1-risk, intermediate-2-risk or high-risk MDS189. Lenalidomide is approved 
for use by individuals who are RBC transfusion dependent with isolated 
del(5q) and with a low or intermediate-1 risk IPSS score. Luspatercept is 
approved for adults with ring sideroblasts or MDS/MPN with ring side-
roblasts and thrombocytosis in whom erythropoiesis-stimulating drugs 
fail or who are unlikely to respond to one of these drugs and require two 
or more RBC transfusions over 8 weeks.

The reasons why there are so few FDA-approved and EMA-
approved drugs for MDS are complex. The most obvious reason is the 
diverse causes and pathophysiology of MDS. For example, as discussed 
earlier, therapy-related MDS is probably the result of somatic muta-
tions, whereas other MDS cases may result from or be aggravated by 
an abnormal bone marrow microenvironment, an abnormal immune 
response or a combination of these factors87,242,243. Furthermore, indi-
viduals with the same phenotype may have discordant genotypes and 
vice versa. Another challenge is the clinical heterogeneity of MDS, 
making the design and execution of clinical trials difficult. Most signs 
and symptoms of MDS are an indirect effect of the cancer. In addition, 
the mechanism of action of MDS pharmacotherapies is unclear, even 
for approved drugs such as azacitidine and decitabine. For example, 
the target genes of these drugs are uncertain and there is not a good 
correlation between the degree of genome-wide hypermethylation, 
post-therapy hypomethylation and response244–246. Another obstacle 
is the controversy over which individuals with MDS, especially those 
with lower-risk MDS, should be treated.

Other drugs are often used to treat complications of MDS such as 
anaemia (erythropoiesis-stimulating drugs and androgenic steroids) 
and thrombocytopenia (eltrombopag and romiplostim). Below, we 
discuss examples of these drugs.

Erythropoiesis-stimulating agents: luspatercept. Luspatercept is a 
decoy fusion protein for TGFβ superfamily ligands that inhibits SMAD2 
and SMAD3 signalling and increases late-stage erythropoiesis. In a 
phase III trial in 229 individuals with ring sideroblasts and very-low-
risk to intermediate-risk MDS who were RBC transfusion dependent, 
luspatercept therapy resulted in RBC transfusion independence for  
≥8 weeks in ~40% and for ≥12 weeks in ~30% of individuals181. Based 
on these data, luspatercept was approved by the FDA in adults with 
anaemia in whom erythropoiesis-stimulating agents fail and who are 
receiving two or more RBC transfusions over 8 weeks, those with very-
low to intermediate IPSS-R risk MDS with ring sideroblasts, or those 
with MDS/MPN with ring sideroblasts and thrombocytosis.

Thrombocytopenia therapies: romiplostim. Romiplostim is a 
peptibody (Fc-peptide fusion protein) designed to increase platelet 
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production. A small phase I/II trial (NCT00303472) reported that romi-
plostim was safe and effective in individuals with MDS and thrombo
cytopenia247. Another phase II study (NCT00303472) reported an 
effective starting dose248. A randomized phase II study (NCT00614523) 
in individuals with lower-risk MDS reported that romiplostim increased 
platelet concentrations, decreased bleeding events and decreased the 
frequency of platelet transfusions compared with placebo185. However, 
the study was halted early because of concern about a higher incidence 
of AML transformation in the romiplostim arm185. Because of this con-
cern, romiplostim should not be used in individuals with MDS with 
excess blasts185,249,250.

Quality of life
In the absence of disease-modifying interventions, an important 
goal in MDS therapy is to improve health-related QOL (HRQOL), and a 
structured evaluation of QOL is recommended in most MDS therapy 
guidelines. Much of the disease burden of MDS, especially in lower-risk 
MDS, is a decreased QOL which causes disease-related symptoms (for 
example, fatigue) and psychosocial sequelae203,235,251,252. Several vali-
dated instruments exist to quantify HRQOL in individuals with MDS, 
including the European Organization for Research and Treatment of 
Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ-C30), the 
Functional Assessment of Cancer-Anaemia (FACT-An), Haematological 
Malignancy Patient-Reported Outcome (HM-PRO) scale, the Quality of 
Life in Myelodysplasia Scale (QUALMS) and the Quality of Life E (QOL-E) 
scale253–257. Other instruments that quantify fatigue include the Multi-
dimensional Fatigue Inventory (MFI) and the Brief Fatigue Inventory 
(BFI)258,259. Generic HRQOL instruments, such as the 36-item Short Form 
(SF-36), the 12-item Short Form (SF-12), the 5-item European Quality of 
Life Five Dimensions (EQ-5D) and the European Quality of Life Visual 
Analogue Scale (EQ-VAS), are also used260–262. The plethora of HRQOL 
instruments suggests that no single instrument is entirely adequate. 
For example, it is difficult to reach conclusions about whether drugs 
that improve fatigue do so by increasing haemoglobin concentration, 
decreasing RBC transfusion frequency or a combination of both263–266. 
Unfortunately, few randomized controlled trials have included HRQOL 
as an end point267.

Outlook
Challenges
MDS is a complex, heterogeneous cancer that is increasing in incidence 
and prevalence and is expected to continue doing so as populations 
age and more individuals with cancer exposed to DNA-damaging drugs 
and radiation therapy live longer. The aetiology (or aetiologies) is in 
most cases unknown but some cases are related to or associated with 
antecedent haematological conditions. Other cases develop after expo-
sure to mutagenic and/or carcinogenic drugs and ionizing radiation, 
often in the context of anticancer therapy (Fig. 3). With a few exceptions, 
the pathogenesis and pathophysiology of MDS are poorly understood. 
Despite the existence of several survival prognostic and predictive 
models/scores for MDS, none of these is especially accurate at the 
individual level and most are of modest value in directing therapy. 
Consensus statements and clinical practice guidelines are useful but 
again of limited value at the individual level (reviewed elsewhere268). 
Only five drugs are approved by the FDA for the treatment of MDS but 
several others are used to treat MDS-associated bone marrow failure. 
Drug development in MDS has been slow because of the substantial 
disease heterogeneity, and there is also a limited understanding of 
how most approved drugs work.

Drugs in development
Clinical trials of drugs being developed for MDS are under way (those 
registered with ClinicalTrials.gov are presented in Supplementary 
Fig. 1). Most studies are uncontrolled and unblinded, with few hetero
geneous individuals and diverse prior therapies and prognoses. As such, 
it is impossible to critically comment on drug safety and/or efficacy. 
Some drugs in development are discussed below.

Emavusertib. Preclinical data suggest that the IRAK4 inhibitor ema-
vusertib (CA-4948) is active in MDS cells with spliceosome mutations, 
including U2AF1 and SF3B1, and this drug is being evaluated in a clinical 
trial, alone or in combination with azacitidine or venetoclax in individuals  
with higher-risk MDS and AML (NCT04278768).

IDH1 and IDH2 inhibitors. IDH1 or IDH2 mutations occur in 5% of MDS 
cases269. The prognostic significance of these mutations is controver-
sial and is affected by other co-varieties, including co-mutations270,271. 
Several trials of ivosidenib272 (a small-molecule inhibitor of IDH1, 
NCT04493164) and enasidenib273 (an IDH2 inhibitor, NCT03383575) 
included individuals with high-risk MDS. Some trials were in individuals 
with advanced MDS and/or AML whereas others were in untreated indi-
viduals. Some are single drug studies whereas others are combination 
studies109,110,269,274. Ivosidenib and enasidenib have only been tested in 
individuals with the relevant mutation and neither is approved by the 
FDA or EMA for individuals with MDS. Given the lack of suitable trials, 
it is too early to comment on their safety and efficacy in MDS.

Eltrombopag. Eltrombopag, a thrombopoietin receptor agonist, 
was tested in a randomized phase II trial in individuals with low-risk 
or intermediate-1-risk MDS and platelets <30 × 109/l (ref.184). Platelet 
concentration improved in ~50% of individuals and severe bleeding epi-
sodes were reduced. Other studies report similar data275,276. In another 
randomized phase II study in individuals with intermediate-2-risk or 
high-risk MDS and platelets ≤25 × 109/l, individuals receiving eltrom-
bopag had considerable fewer clinically relevant thrombocytopenic 
events277. Eltrombopag is not approved by the FDA for the therapy of 
MDS and has a warning of an increased risk of death and of progression 
of MDS to AML278.

Magrolimab. Magrolimab, an anti-CD47 monoclonal antibody, is 
intended to reverse the CD47 macrophage ‘don’t eat me’ signal279–281. 
Combining magrolimab with azacitidine should increase the induc-
tion of apoptosis of MDS cells by macrophages. In a phase Ib trial,  
95 individuals with intermediate-risk to very-high-risk MDS received 
magrolimab with azacitidine, with an overall response rate of 75% and 
a complete response rate of ~33%. Responses were highest in people 
with a TP53 mutation (40% complete remission, median overall survival 
16.3 months)282.

Venetoclax. The BCL-2 inhibitor venetoclax has been tested in 
combination with azacitidine in a phase Ib study (NCT02942290)  
in 57 individuals with untreated high-risk MDS283. This study reported 
an overall response rate of ~80% and a ~40% complete remission rate. 
Median response duration was 15 months and median progression-
free survival was 18 months. However, 97% of individuals had grade 3  
or higher adverse events. Another phase Ib study (NCT02966782) 
enrolled 46 individuals with advanced MDS who received venetoclax 
with or without azacitidine284. The overall response rate was ~50% and 
the complete response rate was ~13%. Progression-free survival at  
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6 months was ~75%284. Individuals with biallelic TP53 mutations did not 
respond285. It is impossible to know from these data whether venetoclax 
is safe and effective in MDS or whether there is an advantage of adding 
venetoclax to hypomethylating drugs.

Basic research
Progress in treating MDS could be accelerated if our understanding 
of its aetiology, biology and pathophysiology were substantially 
increased. Progress is being made albeit slowly. In the interim, treat-
ment of MDS is predominately symptomatic rather than disease 
modifying, with the possible exception of hypomethylating drugs and 
transplantation. The pace of research in MDS has been dramatic 
and, hopefully, a better understanding and new therapies are on the 
horizon (Supplementary Fig. 2).

Perspectives
In summary, substantial progress is being made in our understanding of 
the biology of MDS, in classifying MDS and in predicting outcomes. Pro-
gress, albeit less impressive, is also being made in expanding and improv-
ing MDS therapy. Several new drugs are in development and there is 
renewed interest in HCT in individuals with high-risk MDS. Furthermore, 
progress is occurring in the establishment of international collaborative 
studies, which should accelerate therapy advances. Nevertheless, more 
is needed to reach the important goals of a thorough understanding of 
MDS pathogenesis and personalized treatment of this syndrome.

Published online: xx xx xxxx
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