# MDS in 2021 (and beyond)

Rena Buckstein

Chair, Hematology Site Group

Odette Sunnybrook Cancer Center

Associate Professor, Dept of Medicine, U of T

Toronto, Ontario

### Agenda

- Case
- Diagnosis and Prognosis
- Therapeutic algorithm
- New approved agents
- Clinical trials

### Case

- 71 yo male
- Retired teacher
- PMH: HTN, type 2 diabetes, osteoarthritis of his back
- Family history: no cancer
- Married with 2 grown children, 4 grandchildren
- Walks 1 hour daily
- Past smoker, ETOH social



### Case-continued

- Complains to GP of increasing fatigue over the last 2 months, decreased stamina, some SOB when climbing stairs
- No weight loss, infections, swelling, skin rashes or change in organ function
- Exam normal
- Blood work: hgb 105 (normal 135-175), WBC 3.5 (normal 5-10), Neutrophils are 1.5, platelets are 130 (normal 150-400)
- Referred to me- Bone marrow biopsy is performed
- Diagnosis is MDS: RCMD with ring sideroblasts; blasts are 3%
- Chromosomes are normal

### Case continued

- What is this diagnosis?
- What is his prognosis?
- Is it curable?
- What are his treatment options?

### Myelodysplastic syndromes

- Heterogenous group of blood cancers (clonal stem cell disorder)
- Incidence is 4/100,000
  - 8700 new cases each year in Canada
- More common in men
- May arise after previous chemotherapy or radiation or occupational exposures
- Presents with low blood counts, infections, bleeding
- 25-30% will develop acute myeloid leukemia
- Bone marrow transplant is the only cure





### Symptoms of MDS

- Fatigue
- Breathlessness
- Easy bruising or bleeding
- Weight loss
- Loss of stamina
- Asymptomatic

## Epidemiology



### **Risk factors**

- Unknown in 80%
- Age, male sex
- Mutagenic exposures:
  - Radiation
  - Chemotherapy
    - Alkylators: cyclophosphamide, melphalan
    - Topo-2 inhibitors: mitoxantrone, etoposide
- Environmental/occupational- heavy metals, benzene
- Smoking
- Autoimmunity
- Obesity (BMI > 25)
- Hereditary

### Diagnosis

- Bone marrow aspirate and biopsy
- Classification using WHO
  - How many blood lineages look abnormal
  - What % blasts
  - Chromosome del5q or other chromosome abnormalities
  - Are there ring sideroblasts



5q- Syndrome: Chromosomal Abnormality



del(5)(q13q33)

Reprinted with permission from Vardiman JW. Available at: http://www.ashimagebank.org/cgi/content/full/2001/1205/100197/F

### Prognosis

- IPSS
- IPSS-R
- IPSS-M
- Provide estimations of overall survival (years) and probability of developing AML

#### Prognostic Values for Determining IPSS-R Score

| Value/Score             | 0         | 0.5         | 1       | 1.5 | 2            | 3    | 4         |
|-------------------------|-----------|-------------|---------|-----|--------------|------|-----------|
| Cytogenetics Risk Group | Very Good |             | Good    |     | Intermediate | Poor | Very Poor |
| Blasts (%)              | <2%       |             | >2%-<5% |     | 5-10%        | >10% |           |
| Hemoglobin (g/dL)       | ≥10       |             | 8-<10   | <8  |              |      |           |
| Platelets               | ≥100,000  | 50-<100,000 | <50,000 |     |              |      |           |
| ANC                     | ≥0.8      | <0.8        |         |     |              |      |           |

Cytogenetics play a very important role in estimating prognosis for a patient with MDS. The IPSS-R is based on a revised grouping of cytogenetic abnormalities (see: *IPSS-R calculator at www.mds-foundation.org/ipss-r-calculator*)

| Cytogenetic Risk Group | Cytogenetic Abnormalities                                                      | Estimated Survival |
|------------------------|--------------------------------------------------------------------------------|--------------------|
| Very Good              | del(11q), -Y                                                                   | 5.4 years          |
| Good                   | Normal, del(5q), del(12p), del(20q), double including del(5q)                  | 4.8 years          |
| Intermediate           | del(7q), +8, +19, i(17q), any other single or double independent clones        | 2.7 years          |
| Poor                   | -7, inv(3)/t(3q)/del(3q). double including -7/del(7q) Complex: 3 abnormalities | 1.5 years          |
| Very Poor              | Complex: >3 abnormalities                                                      | 0.7 years          |

There are five overall risk scores in the IPSS-R with estimated survival and median risk of AML:

| Score                                   | ≤1.5<br>Very Low | >1.5-3<br>Low | >3-4.5<br>Intermediate | >4.5-6<br>High | >6<br>Very High |
|-----------------------------------------|------------------|---------------|------------------------|----------------|-----------------|
| Overall Survival (mean)                 | 8.8 years        | 5.3 years     | 3.0 years              | 1.6 years      | 0.8 years       |
| Risk of AML in 25% of patients (median) | Not reached      | 10.8 years    | 3.2 years              | 1.4 years      | 0.73 years      |

Our patient: IPSS-R is 2: low risk

| Uncoding the genetic heterogeneity of myelodysplastic syndrome    | Pathways and     | Frequency, % |
|-------------------------------------------------------------------|------------------|--------------|
|                                                                   | RNA Splicing     |              |
|                                                                   | SF3B1            | 15–30        |
| DNMI3A PPM1D IDH1 NRAS                                            | SRSF2            | 10–20        |
| KRAS                                                              | U2AF1            | <10          |
|                                                                   | ZRSR2            | <10          |
|                                                                   | DNA methylation  |              |
|                                                                   | TET2             | 20–30        |
|                                                                   | DNMT3A           | 10–15        |
|                                                                   | IDH1/IDH2        | 5            |
|                                                                   | Chromatin        |              |
| SF3B1 FLT3                                                        | modification     | 15–20        |
| SRSE2 NPM1                                                        | ASXL1            |              |
| ZRSR2 EZH2 RUNX1                                                  | EZH2             | 5            |
| U2AF1 ASXL1 CATA2 BCOB                                            | RAS pathway      |              |
| GATAZ BEOR                                                        | CBL              | <5           |
| Early — Late                                                      | NRAS/KRAS        | <5           |
|                                                                   | Transcription    |              |
| R. Coleman Lindsley, Am Soc Hematol Educ Program, 2017, Figure 2. | RUNX1            | 10           |
|                                                                   | BCOR             | <5           |
|                                                                   | Tumor suppressor |              |
|                                                                   | ТР53             | 5            |



Papaemmanuil E et al. Blood (2013) Haferlach T et al., Leukemia (2014)



C

Rafael Bejar Haematologica 2014;99:956-964

| Category                                            | Variable                                        |
|-----------------------------------------------------|-------------------------------------------------|
| confounder                                          | 1/10 Age, in years                              |
|                                                     | Sex Male                                        |
|                                                     | Type Secondary/Therapy-related                  |
| clinical                                            | 15 Bone Marrow Blasts, in %                     |
|                                                     | Visa min(Platelets.250), in x10 <sup>8</sup> /L |
|                                                     | Hemoglobin, in gidL                             |
| cytogenetics                                        | IPSS-R category vector*                         |
| gene main effects                                   | TP53 <sup>null</sup>                            |
| 22 variables, 21 genes                              | MLL <sup>PTD</sup>                              |
|                                                     | FLT3 <sup>ID-HD</sup>                           |
|                                                     | SF381"                                          |
|                                                     | NPM1                                            |
|                                                     | RUNXI                                           |
|                                                     | IDH2                                            |
|                                                     | NRAS                                            |
|                                                     | ETV6                                            |
|                                                     | EZH2                                            |
|                                                     | SETBP1                                          |
|                                                     | CBL                                             |
|                                                     | SRSF2                                           |
|                                                     | UZAF1                                           |
|                                                     | DNMT3A                                          |
|                                                     | ASXL1                                           |
|                                                     | KRAS                                            |
|                                                     | NFI                                             |
|                                                     | STAG2                                           |
|                                                     | BCOR                                            |
|                                                     | CEBPA                                           |
|                                                     | SF361"                                          |
| gene residuals <sup>3</sup><br>1 variable, 17 genes | min(Nres,2)                                     |

# Patient tailored risk score



### **IPSS-M risk strata**



### IPSS-R score of > 3.5 distinguishes lower from higher risk disease



# Other prognostic factors

- Fatigue
- Frailty
- Disability
- Comorbidity

Refine prognosis further by 20-30%

### Goals of Treatment

#### Lower risk disease

- Improve BM function
- Decrease or eliminate transfusions
- Improve quality of life
- Improve overall survival

#### **Higher risk disease**

- Delay time to acute leukemia
- Improve overall survival
- Improve quality of life
- Decrease or eliminate transfusions

### **Anemia Management Algorithm in LR-MDS**



Volpe. Ther Adv Hematol. 2021;12:2040620720986641.

### **Treatment Algorithm: Higher-Risk MDS**



#### Luspatercept's Novel Mechanism Restores RBC's Ability to Mature

ACCELERON



8

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

### Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes

P. Fenaux, U. Platzbecker, G.J. Mufti, G. Garcia-Manero, R. Buckstein, V. Santini, M. Díez-Campelo, C. Finelli, M. Cazzola, O. Ilhan, M.A. Sekeres, J.F. Falantes, B. Arrizabalaga, F. Salvi, V. Giai, P. Vyas, D. Bowen, D. Selleslag, A.E. DeZern, J.G. Jurcic, U. Germing, K.S. Götze, B. Quesnel, O. Beyne-Rauzy, T. Cluzeau, M.-T. Voso, D. Mazure, E. Vellenga, P.L. Greenberg, E. Hellström-Lindberg, A.M. Zeidan, L. Adès, A. Verma, M.R. Savona, A. Laadem, A. Benzohra, J. Zhang, A. Rampersad, D.R. Dunshee, P.G. Linde, M.L. Sherman, R.S. Komrokji, and A.F. List

ABSTRACT

### MEDALIST: Study Design

• International, randomized, double-blind, placebo-controlled phase III trial



Patients ≥ 18 yrs of age with nondel(5q) MDS and ring sideroblasts per WHO 2016 criteria; IPSS-R risk that is very low, low, or intermediate; refractory, intolerant, or ineligible for ESAs; RBC transfusion dependent (N = 229)



Treatment continued until lack of clinical benefit or PD

- Primary endpoint: RBC-TI for  $\geq$  8 wks between Wk 1 and Wk 24
- Secondary endpoints: RBC-TI for ≥ 12 wks between Wk 1 and Wk 24, modified hematologic improvement–erythroid response per IWG 2006 criteria, DoR, Hb change from baseline

#### RBC-TI $\geq$ 8 weeks Achieved any time during treatment period



- Primary endpoint previously reported: 37.9% luspatercept versus 13.2% placebo patients achieved RBC-TI ≥ 8 weeks during Weeks 1–24 (P < 0.0001)<sup>1</sup>
- Secondary endpoint : 52.9% luspatercept versus 11.8% placebo patients achieved modified HI-E responses per IWG 2006 criteria

CI, confidence interval; OR, odds ratio.

Data cutoff: July 1, 2019.

1. MEDALIST authors. Blood. 2018;132:abstract 1.

### Luspatercept



### Over 48 weeks: 12 fewer units of blood and 6 fewer transfusions

### How is luspatercept given?

- Under the skin, every 3 weeks
- 3 dose escalations 6 weeks (1, 1.33, 1.75 mg/kg)

# Side effects of luspatercept

|                                                   | Luspatercept (N=153) | Placebo (N=76)   |
|---------------------------------------------------|----------------------|------------------|
| System Organ Class/Preferred Term                 | Any Grade, n (%)     | Any Grade, n (%) |
| General disorder or administration-site condition |                      |                  |
| Fatigue <sup>a</sup>                              | 70 (46)              | 19 (25)          |
| Gastrointestinal disorder                         |                      |                  |
| Diarrhea                                          | 34 (22)              | 7 (9)            |
| Nausea <sup>b</sup>                               | 31 (20)              | 6 (8)            |
| Constipation                                      | 17 (11)              | 7 (9)            |
| Nervous system disorder                           |                      |                  |
| Dizziness                                         | 30 (20)              | 4 (5)            |
| Headache                                          | 24 (16)              | 5 (7)            |
| Syncope/presyncope                                | 10 (7)               | 1 (1)            |
| Renal and urinary disorders                       |                      |                  |
| Renal impairment <sup>b,c</sup>                   | 11 (7)               | 2 (3)            |

# Side Effects of Luspatercept

|                                               | Luspatercept (N=153) | Placebo (N=76)   |
|-----------------------------------------------|----------------------|------------------|
| Organ System Class/Preferred Term             | Any Grade, n (%)     | Any Grade, n (%) |
| Musculoskeletal or connective-tissue disorder |                      |                  |
| Back pain <sup>a</sup>                        | 29 (19)              | 5 (7)            |
| Myalgia                                       | 13 (8)               | 5 (7)            |
| Infection or infestation                      |                      |                  |
| Bronchitis <sup>a</sup>                       | 17 (11)              | 1 (1)            |
| Urinary tract infection <sup>a</sup>          | 17 (11)              | 4 (5)            |
| Upper respiratory tract infection             | 15 (10)              | 3 (4)            |
| Viral upper respiratory tract infection       | 12 (8)               | 4 (5)            |
| Influenza                                     | 10 (7)               | 0 (0)            |
| Vascular Disorders                            |                      |                  |
| Hypertension <sup>b</sup>                     | 13 (9)               | 7 (9)            |

# Other agents for transfusion dependent lower risk MDS

- Imetelstat
- Roxadustat
- Decitabine-cedazuridine

## Imetelstat : A first-in-class telomerase inhibitor



| Parameter             | Subset (n=38) |
|-----------------------|---------------|
| 8 week TI             | 42%           |
| Median time to onset  | 8.3 weeks     |
| Median duration of TI | 86 weeks      |
| HI-E (IWG 2006)       | 68%           |

Platzbecker U et al. EHA 2020. Abstract S183. Steensma D et al. JCO 2021.

### HIFa prolyl hydroxylase domain inhibitor: Roxadustat



#### Roxadustat Transfusion Independence at 28 and 52 Weeks (Combined Data)



 During first 8 wks of fixed-dose treatment, transfusion independence achieved by 25% of patients receiving roxadustat 1.5 mg/kg and 50% of patients receiving roxadustat 2.0 mg/kg

Henry. ASH 2020. Abstr 1277. Reproduced with permission.

- 58% had reduction in RBC transfusions of > 50%
- Ongoing phase III study versus placebo (n=156)

### Hypomethylating agents are effective in MDS



#### **DNA methyltransferases in MDS**

Azacytidine: 75 mg/m2 SC x 7 days Decitabine: 20 mg/m2 IV x 5 days

### Inqovi: Decitabine + Cedazuridine



### **DEC-C Phase 3: Randomized Crossover Design<sup>1,2</sup>**



### **DEC-C Phase 3: Patient Baseline Characteristics<sup>1</sup>**

| Characteristics           |                       | Total Treated<br>N=133 (n%) |                          |
|---------------------------|-----------------------|-----------------------------|--------------------------|
| Median age, y (range)     | Median age, y (range) |                             |                          |
| Sar                       | Male                  | e 87 (65%)                  |                          |
| Sex                       | Female                | 46 (35%)                    |                          |
| Median weight, kg (range) |                       | 83 (45 -158)                |                          |
| Median BSA, m² (range)    |                       | 1.98 (1.4 - 2.9)            |                          |
| CMML                      |                       | 16 (12%)                    |                          |
|                           | High risk             | 21 (16%)                    |                          |
| MDS, IPSS classification  | Int-1 and 2           | 90 (68%)                    | 53% lower risk           |
|                           | Low risk              | 6 (5%)                      | <b>L</b> 36% nigher risk |
|                           | RBCs                  | 53 (39%)                    |                          |
| Transfusion dependent     | Platelets             | 12 (9%)                     |                          |
| ECOG PS                   | 0                     | 55 (41%)                    |                          |
|                           | 1                     | 78 (59%)                    |                          |

~7.5% of patients had received prior HMAs: Decitabine/Azacitidine; ( $\leq 1$  cycles)

1. Clinical Efficacy and Safety of Oral Decitabine/Cedazuridine in 133 Patients with Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML), Michael R. Savona et al, Session 637, Abstract # 1230 presented at the ASH Virtual Annual Meeting, Dec 5 – 8, 2020

### Phase - 3 Results: AUC equivalence, Demethylation<sup>1</sup>

| DEC                      |              |     | IV DEC   | DEC-C |          | Ratio of Geo. LSM   | Intrasubject |  |
|--------------------------|--------------|-----|----------|-------|----------|---------------------|--------------|--|
| 5-day AUC <sub>0-2</sub> | ₂₄ (h∙ng/mL) | Ν   | Geo. LSM | Ν     | Geo. LSM | Oral/IV, % (90% CI) | (%CV)        |  |
| Primary<br>Analysis      | Paired*      | 123 | 864.9    | 123   | 855.7    | 98.9 (92.7, 105.6)  | 31.7         |  |

Geo. LSM = Geometric Least Squares Means





### **Results Phase-3: Efficacy Response<sup>1</sup>**

| Response category                                                                                                                                                                                                                                                                                                                                                                             | Treated Patients<br>(N=133), n (%) | 95% CI       | Median time to                       | Median             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|--------------------------------------|--------------------|
| Complete response (CR)                                                                                                                                                                                                                                                                                                                                                                        | 29 (22%)                           | (15.1,29.8)  |                                      | (months)           |
| Partial response (PR)                                                                                                                                                                                                                                                                                                                                                                         | 0                                  |              |                                      | (montins)          |
| Marrow CR (mCR)                                                                                                                                                                                                                                                                                                                                                                               | 43 (32.3%)                         | (24.5,41.0)  | Time to CR                           | 4.5                |
| mCR with hematologic improvement                                                                                                                                                                                                                                                                                                                                                              | 22 (16.5%)                         | (10.7,24.0)  | Time to marrow                       | 2.2                |
| Hematologic improvement (HI)                                                                                                                                                                                                                                                                                                                                                                  | 10 (7.5%)                          | (3.7,13.4)   | CR                                   |                    |
| HI-erythroid                                                                                                                                                                                                                                                                                                                                                                                  | 2 (1.5%)                           | (0.2,5.3)    | Duration of CD                       | 140                |
| HI-neutrophils                                                                                                                                                                                                                                                                                                                                                                                | 1 (0.8%)                           | (0.0,4.1)    | Duration of CR                       | 14.0               |
| HI-platelet                                                                                                                                                                                                                                                                                                                                                                                   | 7 (5.3%)                           | (2.1,10.5)   | Duration of best                     | 12.7               |
| Overall response (CR + PR + mCR + HI)                                                                                                                                                                                                                                                                                                                                                         | 82 (61.7%)                         | (52.8,69.9)  | response                             |                    |
| Progressive Disease                                                                                                                                                                                                                                                                                                                                                                           | 6 (4.5%)                           | (1.7,9.6)    | • 34 (26%) of subjects pro           | ceeded to HCT      |
| No Response                                                                                                                                                                                                                                                                                                                                                                                   | 28 (21.1%)                         | (14.5, 29.0) | Transfusion independen               | ce (RBC and or     |
| Non-evaluable                                                                                                                                                                                                                                                                                                                                                                                 | 17 (12.8%)                         | (7.6, 19.7)  | platelets): 30/50 (53%) <sup>2</sup> |                    |
| Clinical Efficacy and Safety of Oral Decitabine/Cedazuridine in 133 Patients with Myelodysplastic Syndrom<br>(MDS) and Chronic Myelomonocytic Leukemia (CMML), Michael R. Savona et al, Session 637, Abstract #<br>1230 presented at the ASH Virtual Annual Meeting, Dec 5 – 8, 2020<br>INQOVI (decitabine/cedazuridine) tablets [product monograph]. Oakville, ON: Taiho Pharma Canada, Inc; | nes                                |              | Median number of cycle               | es: 9 <sup>3</sup> |
| July 03, 2020<br>Prolonged Survival Observed in 133 MDS Patients Treated with Oral Decitabine/Cedazuridine Michael R                                                                                                                                                                                                                                                                          |                                    |              |                                      |                    |

 Prolonged Survival Observed in 133 MDS Patients Treated with Oral Decitabine/Cedazuridine, Micha Savona et al, Abstract P648, © Poster presented at: 16th International Congress on Myelodysplastic Syndromes (MDS), virtual meeting, September 23 26, 2021

1.

2.

TAIHO PHARMA CANADA, INC.

### **Results Phase-3: Overall Survival<sup>1</sup>**



- Median follow up is 32 months
- mOS for the 133 patients is 31.7months (95% CI: 28.0, NE).
  - mOS for higher risk disease: 15 months
- Leukemia free survival is 29.1 months (95% CI:22.1, NE)

1. Prolonged Survival Observed in 133 MDS Patients Treated with Oral Decitabine/Cedazuridine, Michael R. Savona et al, Abstract P648, © Poster presented at: 16th International Congress on Myelodysplastic Syndromes (MDS), virtual meeting, September 23 26, 2021

### Safety of decitabine/cedazuridine

# Table 3. Results: Safety - Treatment Emergent Adverse Events in >10% of Patients\*

| Preferred Term                                       | Phase 3 Total<br>(N=133, n [%]) | Phase 3 Total<br>Grade 3 or higher |  |  |  |  |  |
|------------------------------------------------------|---------------------------------|------------------------------------|--|--|--|--|--|
| Neutropenia                                          | 68 (51%)                        | 65 (49%)                           |  |  |  |  |  |
| Thrombocytopenia                                     | 71 (53%)                        | 62 (47%)                           |  |  |  |  |  |
| Anaemia                                              | 55 (41%)                        | 47 (35%)                           |  |  |  |  |  |
| Leukopenia                                           | 33 (25%)                        | 29 (22%)                           |  |  |  |  |  |
| Febrile                                              | 18 (14%)                        | 17 (13%)                           |  |  |  |  |  |
| Neutropenia                                          |                                 |                                    |  |  |  |  |  |
| Fatigue                                              | 32 (24%)                        | 3 (2%)                             |  |  |  |  |  |
| Diarrhea                                             | 22 (17%)                        | 2 (2%)                             |  |  |  |  |  |
| Nausea                                               | 33 (25%)                        | 0 (0%)                             |  |  |  |  |  |
| Decreased                                            | 19 (14%)                        | 0 (0%)                             |  |  |  |  |  |
| Appetite                                             |                                 |                                    |  |  |  |  |  |
| Constipation                                         | 18 (14%)                        | 0 (0%)                             |  |  |  |  |  |
| *Events attributable to oral decitabine/cedazuridine |                                 |                                    |  |  |  |  |  |

- Safety profile consistent with that of IV decitabine.
- No new safety concerns with longer follow up.

### Which HMA to use for higher risk disease?

### SEER Medicare study 2004-2011



Median OS 15 mos

Median OS 11 months

Zeidan A et al. BJH 2016

### Advantages and Disadvantages: AZA

#### Advantages

- Known survival benefit
- Not too tough on the blood counts
- Can be used as bridge to transplant
- May achieve RBC transfusion independence in 40%
- Flexibility in dose adjustment

#### Disadvantages

- Can take 6 cycles to work
- Requires regular in person visits
- Not funded for lower risk disease

### Advantages and Disadvantages of DEC-C

### Advantages

- Oral
- Works quickly to reduce blasts
- May be used as bridge to transplant
- Achieves RBC transfusion independence in 50%
- Available for lower risk disease

#### Disadvantages

- No randomized trial for OS benefit
- Unclear if equivalent to AZA
- More suppressive of blood counts at the beginning
- Less flexibility in dose adjustment
- Not yet funded

### Select Current Phase III Clinical Trials for Newly Diagnosed High Risk MDS

|                                | Sabatolimab                             | Tamibaterone                            | Magrolimab                                          | Venetoclax                    |
|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------|
|                                |                                         | RARU agomsi-                            |                                                     |                               |
| Current Status                 | Ongoing                                 | Ongoing                                 | ENHANCE recruiting                                  | VERONA recruiting             |
| Population                     | Intermed<br>High<br>Very high<br>CMML-2 | RARα +<br>Intermed<br>High<br>Very high | Intermed<br>High<br>Very high                       | Intermed<br>High<br>Very high |
| Planned "n"                    | 500                                     | 190                                     | 520                                                 | 500                           |
| Comparator                     | AZA + PBO                               | AZA + PBO                               | AZA + PBO                                           | AZA + PBO                     |
| Dosing of IP<br>(PLUS SOC AZA) | IV q4 weeks                             | Oral D8-28                              | C1:D1,4,8,11,15, 22<br>C2: D1, 8, 15, 22<br>≥C3 Q2W | Oral D1-14                    |
| Endpoint                       | OS                                      | CR                                      | CR and OS                                           | CR and OS                     |

# Allo vs Hypomethylating/Best Supportive Care in MDS (BMT CTN 1102)

- Open-label, multicenter, biologic assignment study
- Assignment based on high-resolution typing to identify 8/8 HLA-matched related or unrelated donors
  - Mismatched, haploidentical and umbilical cord blood excluded
  - Donor arm subjects expected to undergo HCT within 6 months
- Subjects: Randomized 260 = Donor; 124 No Donor
  - Age 50-75
  - Primary MDS with intermediate-2 or high risk by IPSS
  - Candidates for traditional reduced-intensity transplantation
  - Transplant/non-transplant therapy per institutional standards



### Summary

- MDS is a disease of the myeloid blood stem cell that leads to bone marrow failure and a propensity to AML
- Life expectancy is truncated by the disease
- Treatment is geared according to risk score
- Many patients receive supportive care with transfusions
- Allogeneic transplant is the only potential cure (< 10% qualify)
- Oral hypomethylating agent are now available
- Luspatercept is approved for patients with RS who are TD and will reduce or eliminate transfusions in > 50% of patients who have already received ESAs.
- Numerous clinical trials are underway



### Mds-foundation.org



#### **Building Blocks of Hope Downloads**

#### **Download Complete Book**





# You and MDS – An Animated Patient's Guide to Myelodysplastic Syndromes



We are excited to announce the MDS Foundation's new online patient education resource, titled "You and MDS: An Animated Patient's Guide to Myelodysplastic Syndromes". Please click here to be directed to the You and MDS resource.

TYPES THERAPEUTICS CONGRESSES TRIALS EXPERT OPINIONS