An Overview of Aplastic Anemia in Adults

AAMAC Education Day October 24, 2009 A.Kew

Objectives

• Review the epidemiology, clinical presentation and diagnosis of aplastic anemia in adults

• Discuss the therapy of aplastic anemia in adults

Introduction

- Bone marrow failure syndrome
 - pancytopenia
 - bone marrow hypocellularity
- First described by Paul Ehrlich in 1888

Introduction

- Epidemiology
 - likely ~ 2/million in Western populations
 - Studies from Spain, France, UK, Scandinavia and Brazil
 - higher incidence in Asia
 - gender ratio 1:1
 - 2 age peaks
 - young adults, elderly

Incidence of Aplastic Anemia, Spain

Table 1. Incidence of aplastic anemia according to age and sex.										
	A	ge at diag	N. of	Total						
	2-14	15-24	25-44	45-64	≥65	cases	incidenceª			
Male										
N. of cases	17	25	22	28	31	123				
Incidence	1.92	2.83	1.52	2.56	5.89		2.54			
Female										
N. of cases	12	11	15	31	43	112				
Incidence	1.43	1.41	1.00	2.58	4.89		2.16			
Total										
N. of cases	29	36	37	59	74	235				
Incidence	1.68	2.16	1.26	2.57	5.33		2.34			

*Number of cases per one million people per year.

Montane, E. et al. Haematologica 2008;93:518-523

Clinical Presentation

- Secondary to decreased blood cells
 - anemia (low red cells)
 - fatigue, chest pain and shortness of breath with exertion, palpitations
 - thrombocytopenia (low platelets)
 - bleeding, bruising, petechiae
 - leukopenia (low white blood cells)
 - infections

• Confirmation of the diagnosis

- Define the disease
 - acquired or congenital
 - cause
 - disease severity

- Traditional definition
 - pancytopenia with hypocellular bone marrow
 - normal hematopoietic tissue replaced by fat cells
 - absence of abnormal infiltrate in the bone marrow or increased reticulin (fibrosis or scar)
 - at least 2 of hemoglobin < 100 g/L, platelets < 100, absolute neutrophil count < 1500

- Is the diagnosis really aplastic anemia?
 - Exclude:
 - hypocellular MDS
 - myelofibrosis
 - lymphoma
 - atypical mycobacterial infection
 - anorexia nervosa

- Is the disease an inherited bone marrow failure syndrome?
 - Fanconi anemia
 - Dyskeratosis congenita
 - Shwachman-Diamond syndrome

- What is the cause?
 - idiopathic
 - post-hepatitic
 - drugs, chemicals, environmental exposures
 - PNH
 - pregnancy
 - thymoma

- How severe is the disease?
 - Severe aplastic anemia
 - Bone marrow cellularity < 25%
 - 2/3: ANC < 500, platelets < 20, reticulocytes < 20

- Very severe aplastic anemia
 - As above except ANC < 200

What is the cause of idiopathic aplastic anemia?

• Immune mediated disease

- Variability
 - environmental exposures
 - patient risk factors
 - differences in immune response

Immune destruction of hematopoiesis

Young, N. S. et al. Blood 2006;108:2509-2519

Copyright ©2006 American Society of Hematology. Copyright restrictions may apply.

Treatment

- Depends on severity of disease
 - Nonsevere aplastic anemia
 - follow expectantly
 - Severe aplastic anemia
 - immunosuppression versus allogeneic bone marrow transplant

• Reducing the activation or effectiveness of the immune system

• If aplastic anemia is an autoimmune disease, "shutting down" the immune system is logical

• Standard therapy

- antithymocyte globulin (ATG) and cyclosporin

• ATG

- injection of human lymphocytes into an animal
- animal makes antibodies against the lymphocytes
- the antibodies attack the lymphocytes in the patient

ATG

- Side effects
 - allergic reaction
 - cytokine release syndrome
 - serum sickness
 - infections

Cyclosporin

• Inhibits T lymphocytes

- Side effects
 - kidney problems
 - high blood pressure
 - metabolic problems
 - infections

Study Group	Ν	Median Age	Response (%)	Relapse (%)	Clonal Evolution (%)	Survival (%)
German	84	32	65	19	8	58(11yrs)
EGBMT	100	16	77	12	11	87(5 yrs)
NIH	122	35	61	35	11	55(7 yrs)
Japan	119	9	68	22	6	88(3 yrs)
NĪH	104	30	62	37	9	80(4 yrs)

Late Events After Immunosuppressive Therapy

Rosenfeld, S. et al. JAMA 2003;289:1130-1135.

Relapse after ATG + Cyclosporin

- High risk of relapse
 - 20-40%
- Treat with second course of ATG
 - 50-60% will respond to second course
- No prospective trial comparing horse to rabbit ATG; choice depends on:
 - whether a severe reaction occurred with first course
 - centre practice
 - drug availability

- Background
 - curative therapy
 - 1961
 - first successful transplant using a syngeneic (identical twin) donor
 - 1972
 - first successful transplant using a matched, unrelated donor
 - 1976
 - randomized prospective trial showed survival advantage of matched related donor over standard of care

• Transplanted bone marrow stem cells replaces the failing bone marrow cells

- Stem cells reconstitute all the normal cells
 - new immune system
 - new red cells
 - new platelets

• Potential cure but...

- Complications
 - side effects from chemotherapy
 - graft rejection
 - graft versus host disease
 - long term complications

- Acute complications
 - nausea, vomiting, diarrhea, mucositis
 - organ damage
 - infections
 - bleeding

- Graft failure
 - central problem in aplastic anemia
 - reported in up to 5-15% of patients
 - why?
 - conditioning regimens are nonmyeloablative (chemotherapy not as strong as other transplants)
 - immune activity rejects the graft

- Graft versus host disease
 - acute versus chronic
 - At least 20-40% of patients
 - can be difficult to treat and associated with significant morbidity and decreased quality of life

Long-term Complications

- Toxicities from treatment regimens
- Immune deficiency
- Autoimmune syndromes
- Infectious complications
- Endocrine disturbances

- Chronic GVHD
- Second malignancies
- Cognitive dysfunction
- Psychosocial adjustment
- Decreased quality of life

• Source of stem cells

– unmanipulated bone marrow first choice

- peripheral blood stem cells
 - faster engraftment, but increased GVHD and lower survival
- umbilical cord blood
 - little data

Syngeneic Allogeneic BMT

- Ideal donor is an identical twin

 no need for graft versus tumor effect
 minimizes risk of graft failure
 no GVHD
 - survival rates of 70-90%

Sibling Allogeneic BMT

• Few prospective studies

• Important to consider sibling BMT early

• Steady improvement in outcome over time

Sibling Allogeneic BMT

Passweg Aplastic Anemia Working Party EBMT

Sibling BMT compared to Immunosuppression

Doney, K. et. al. Ann Intern Med 1997;126:107-115

Annals of Internal Medicine

Effect of patient age on survival by treatment group

Doney, K. et. al. Ann Intern Med 1997;126:107-115

Annals of Internal Medicine

Sibling Allogeneic BMT

- Recommendations
 - younger adults with a sibling donor should be treated with allogeneic BMT over immunosuppressive therapy
 - transfusions prior to transplant should be minimized
 - conditioning generally with cyclophosphamide + ATG

Matched, unrelated BMT

• Little prospective data

• Higher morbidity and mortality than sibling BMT

• Improved survival over time

Impact of Better HLA Matching in MUD BMT

Maury, S. et al. Haematologica 2007;92:589-596

Matched, unrelated BMT

- Recommendations
 - at least 2 courses of immunosuppression should be given before considering proceeding with a MUD BMT

HEMATOLOGY ASH Education Program Book

Approach to Treatment

Marsh, J. Hematology 2006;2006:78-85

Copyright ©2006 American Society of Hematology. Copyright restrictions may apply.

HEMATOLOGY ASH Education Program Book

Approach to Treatment

Marsh, J. Hematology 2006;2006:78-85

Copyright ©2006 American Society of Hematology. Copyright restrictions may apply.

• Thank you!

• Questions?