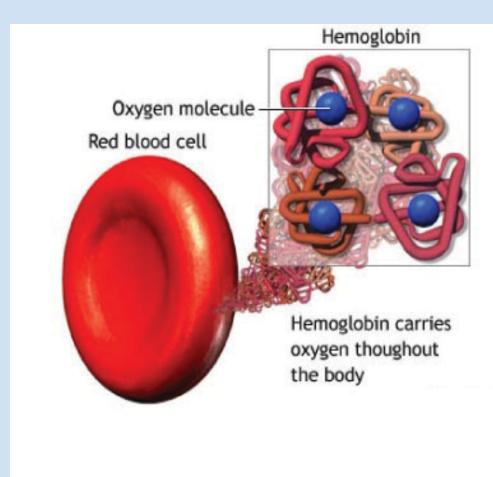
Iron Overload in Bone Marrow Failure


Patient Education Day
Oct 4, 2014

Objectives

- Describe the role of iron in the body
- Review the sources of iron in the body
- Examine the potential complications of iron overload
- Review different ways to prevent and reduce iron overload

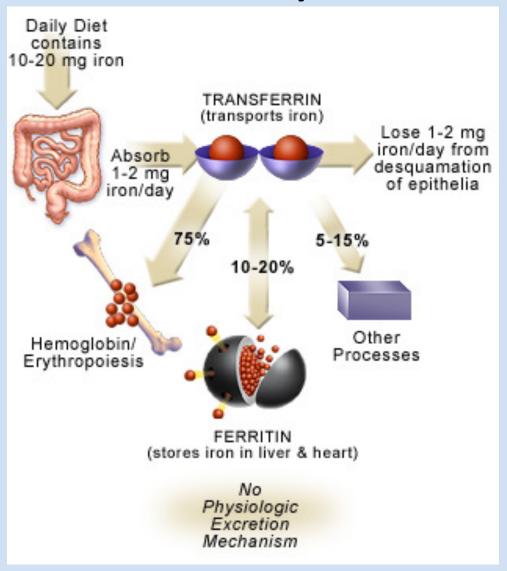
What does iron do in the body?

- All body cells need iron
 - oxygen transport, energy production, and cellular growth and proliferation
- Important part of hemoglobin
- Muscle cells use it to make myoglobin
- Enzymes in other cells
 i.e. catalases

Iron content in the body

- Women average 3g, men average 4g
 - Hemoglobin in red cells 2.5g
 - Other iron-containing proteins i.e. myoglobin 400mg
 - Iron bound to transferrin in plasma3-7mg
 - Remainder is storage iron
- Women generally less storage iron due to increased losses
 - Menses, pregnancy, deliveries, lactation, iron intake may be less
 - Blood donations (either gender)

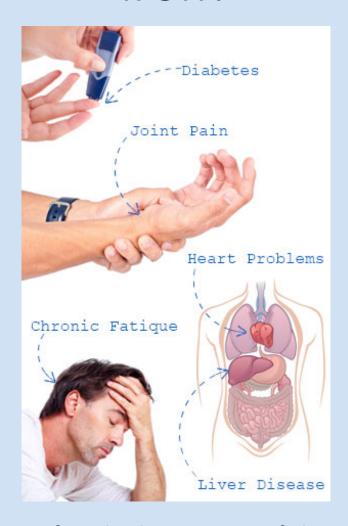
Where do we get dietary iron?


- Food
 - Heme iron meat, poultry, fish easily absorbed
 - Non-heme iron dried beans, lentils, peas
 - Fortified foods flour, cereals, pasta
 - Absorption increased if taken with vit C
 - citrus fruits and juices, cantaloupe, strawberries, broccoli, tomatoes and peppers.
- Vitamin supplements
 - Multivitamins without iron are available

Inhibitors of iron absorption

 Absorption impaired by tea, coffee, cereals, eggs, milk, certain antibiotics, antacids

The iron cycle


Iron is carefully balanced in the body

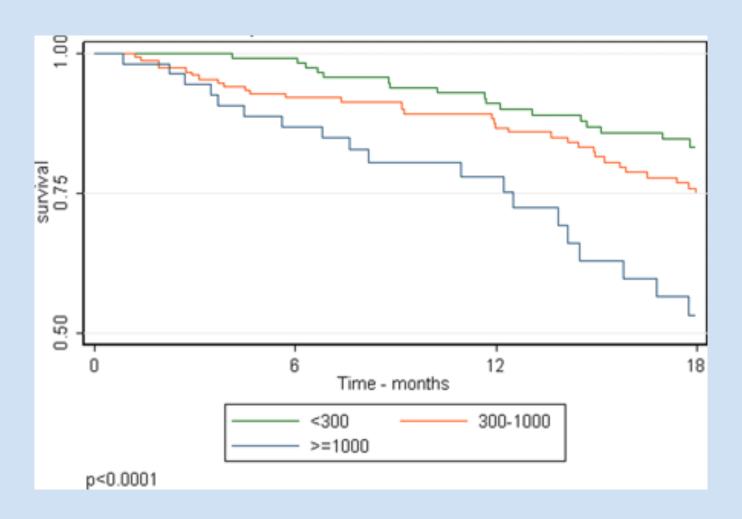
Causes of iron overload

- excessive iron intake
 lron supplements
 Red blood cell transfusions (200 mg/unit)
- 2) increased iron absorption from the GI tract Hereditary hemochromatosis Ineffective red blood cell production
- 3) decreased iron excretion
 Generally fixed iron excretion
 Increased iron excretion if blood donor, blood loss

What happens if we get too much iron?

Many of these symptoms are found in bone marrow failure syndromes that require blood transfusion

How do we measure iron in the body?


- Ferritin (storage iron)
 - Ferritin is an acute phase reactant and is high in inflammation, infection, acute illness as well
- Iron saturation in blood
 - May reflect recent iron in meal or transfusion
- Liver biopsy
 - Accurate, invasive
- MRI ferriscan of liver or cardiac T*MRI
 - Noninvasive, expensive, not always available

How much iron is too much iron?

Depends:

- In hemochromatosis, ferritin>1000ug/L associated
 with increased risk of liver fibrosis and cirrhosis
- In thalassemia major, sustained values>2500 ug/L
 predict long term heart risk
- Low values, <1000 ug/L increase risk of deferoxamine (an iron chelator) toxicity

LeukemiaNet Prospective Registry: Independent Survival Impact of Ferritin

Risk of transfusional iron overload without treatment in thalassemia

- Cardiomyopathy 8-15y
- Hypogonadism 5-10y
- Diabetes 5-10y
- Liver fibrosis and dysfunction 5y
- Cirrhosis 20-30y
- Liver cancer 30-50y
- Infection 2nd most common death in thalassemia major

Risk of Iron Overload in MDS

Transfusion dependency associated with complications of iron overload (2.9x risk) in a retrospective study

- Conduction/rhythm disturbance (4x risk)
- Diabetes (5x risk)
- Liver dysfunction (3x risk)
- Retrospective review of ferritin >1000 μg/l significantly affected overall survival
 - Hazard ratio 1.36 for every 500 μ g/L rise in ferritin >1000 μ g/L.
 - ferritin level 1000 μg/L after a median 21u RBCs

Percent of patients with cardiac iron deposits at post-mortem prior to chelation era

Number of units transfused	% patients with cardiac iron
0-25	1.4%
26-50	11%
51-75	28%
76-100	60%
101-200	60%
201-300	100%
>300	50%

Cardiac MRI

- T2*MRI <20 ms increased cardiac iron and decreased heart contraction
- T2* MRI <10 increased risk of heart failure
- Target is >20ms (normal)

Yearly screen in heavily transfused patients

Principles of iron chelation therapy

- Prevention
 - Balance iron intake and output
- Rescue
 - Patients with high levels of body iron, high levels of cardiac iron, patients with heart dysfunction

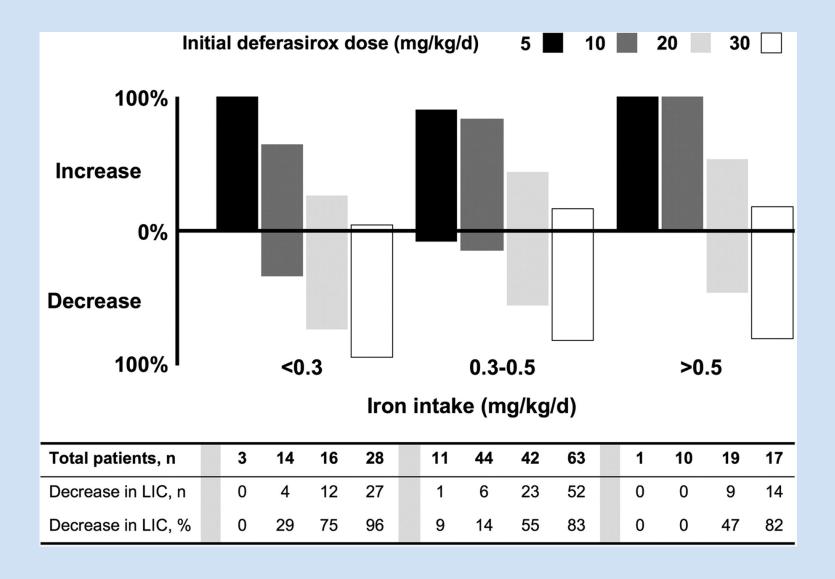
Strategies to reduce iron overload

- 1) Decrease iron load by decreasing transfusions
- Chelation therapy bind iron out of the body and help the body excrete it
 - iv/subcutanous continuous infusion or oral
- 3) Phlebotomies in some patients where bone marrow failure is no longer a problem
 - I.e. post bone marrow transplant, treated aplastic anemia

Decrease iron by decreasing transfusions

- Choose threshold for transfusion based on symptoms
- Erythropoietin in MDS to reduce transfusions based on risk factors:
 - 1) ≥2 units RBCs/month
 - 2) Erythropoietin level >500

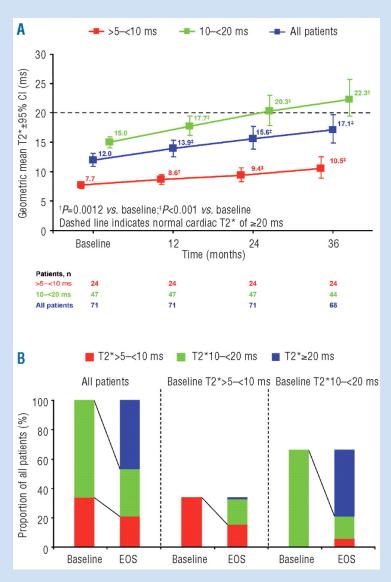
#Risk Factors	Response rate
0	74%
1	23%
2	7%


Improvement in global QOL (p<0.001) with borderline significance for fatigue

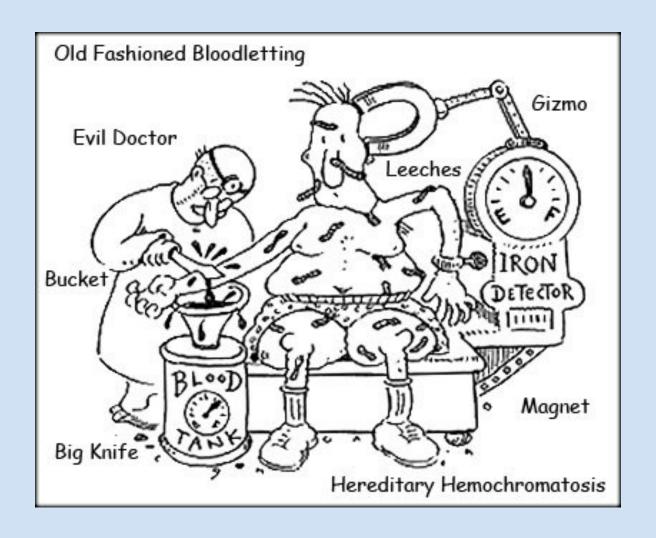
Chelation therapy

	Deferoxamine	Deferasirox
Dose (mg/kg/d)	25-60	20-30
Route	Sc, IV (8-12h, 5d per week) continuous infusion	Oral once daily
Half-life	20-30 mins	8-16h
Side Effects	Local reactions, opthalmologic, hearing, allergy, growth retardation in children	GI upset, rash, elevated creatinine, elevated liver enzymes, opthalmologic, hearing

Can use combination therapy for severe iron overload


Proportion of patients with increased or decreased liver iron concentration (LIC), according to iron intake and deferasirox dose.

Dosing according to transfusion requirements by diagnosis


Improvement in T*MRI and number of patients with severe iron overload over 3 years of deferasirox therapy

Helping reduce side effects of oral deferasirox

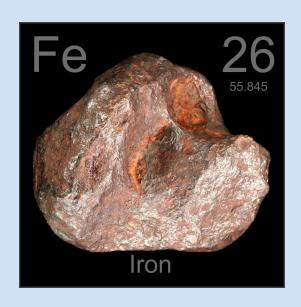
- GI
 - Martini shaker (patient support program)
 - Imodium
 - Antinausea medications
- Renal
 - Stay well hydrated, avoid nephrotoxic medications
- Liver
 - Avoid other hepatotoxic medications

Phlebotomies

Does Iron Chelation Confer a Survival Benefit in MDS?

- Retrospective review from Vancouver of 178 MDS patients 1981 - 2006
- Predictors of survival were IPSS risk disease and iron chelation therapy
- Low/Intermediate-1 IPSS median overall survival for patients receiving iron chelation was 160 vs. 40 months for non-chelated patients.
- ?Selection bias where patients given chelation were more likely to have lower risk MDS

Canadian Guidelines for MDS


- Consider iron chelation:
 - In patients with expected survival at least one year
 - In patients with ferritin >1000, >20 units blood transfused, or documented iron overload
 - In patients with increased iron stores and planned allogeneic stem cell transplantation
- deferoxamine 20-50 mg/kg/day by subcutaneous or intravenous infusion over 12-15 hours 5 days/week
- Deferasirox orally daily
- Monitor for iron overload complications and complications of drug therapy

Elevated serum ferritin is a risk factor for liver sinusoidal obstruction syndrome post HCT

ferritin	Odds Ratio of SOS
628	1.8
1000	2.49
1500	2.61
2000	2.28
3000	3.32
4000	4.10

When do we stop chelation or phlebotomies?

- In hemochromatosis with phlebotomies goal is generally <50 ug/L
- In regularly transfused and chelated
 - 1000ug/L with DFO
 - 500 ug/L with deferasirox
 - ? With combination therapies

Questions?

