Aplastic Anemia & PNH

Loree Larratt

Aplastic Anemia

- Misnomer "Aplastic Pancytopenia"
- Incidence: 2 4 / Million / year
- Young adults with second peak in 5th or 6th decade of life

Presentation

- Insidious onset
- Signs & Symptoms of cytopenias in all three blood lineages
- Splenomegaly (enlarged spleen) rare unless secondary

Presentation

- Cytopenia:
 - Anemia
 - Low red blood cell count
 - Fatigue, pallor, hear pulse in head
 - Thrombocytopenia
 - Low platelets
 - Bruise easily, petechiae (pinpoint red spots)
 - Neutropenia
 - Low white count
 - Impaired immune function, susceptible to infection, viruses

Thrombocytopenia

Aplastic Anemia History

- Ehrlich 1888:
 - rapidly fatal case of severe anemia and leucopenia with fever, ulcerated gums and menorrhagia
 - at autopsy, no active marrow
- Chauftard 1904: aplastic anemia
- 1934: distinct entity

Laboratory

- Red Blood Cell count (RBC) sl macrocytosis, low reticulocyte count
- White Blood Cell count (WBC) low PMN with no immature forms
- Thrombocytopenia
- Bleeding time prolonged depending on platelet count
- Coagulation studies normal
- No signs of hemolysis (unless PNH)
- Bone Marrow hypo / aplastic

Classification

Severe AA

- ANC< 500/ul
- ARC< 40,000/ul
- PI<20,000
- 2 out of 3 criteria

Very Severe AA

ANC< 200/ul

Moderate AA

- Not fulfilling severity criteria
- Chronic needs > 3 months

Bone Marrow

Lab Ancillary tests

- Bone marrow biopsy to rule out hypoplastic MDS
- Cytogenetics to rule out MDS & congenital disorder Fanconi's Anemia
- Flow cytometry (CD55 & CD59) to rule out PNH
- Liver function tests
- Flow cytometry to rule out Large Granular Lymphocyte leukemia, Hairy Cell Leukemia
- HLA typing for BMT
 - increased DR15 in AA & PNH patients

Pathogenesis

- Primary defect or damage to stem cell or less commonly microenvironment
- Evidence for immune mechanism:
 - Autologous engraftment after allogeneic transplant
 - Failure of engraftment with syngeneic transplant
 - Response to immunosuppressive therapy

Etiology

- Idiopathic 40 70 %
- Constitutional
- Irradiation (> 7Gy Irreversible: >5Gy 50%)
- Drugs
- Toxins
- Infections (Hepatitis, Mono, Parvo)
- Pregnancy
- PNH

Other

Other disorders can result in aplastic anemia

- Fanconi's Anemia
- Dyskeratosis Congenita
- Schwachman Diamond Syndrome

Standard Immunosuppressive Therapy

- ATG/CyA
 - Anti-thymocyte globulin over 4 5 days with
 - cyclosporine for 6 12 months
- Initial steroids to reduce allergic reaction and serum sickness
- RR 70 80 % typically within 3 6 mo
- G-CSF does not impact survival
- Relapse 10 30 %
- Risk of developing clonal disease (MDS or PNH)

Treatment failure

- Exhaustion of stem cell reserves
 - Immune mediated AA
- Insufficient Immunosuppression
 - Persistent attack
- Misdiagnosis
- Hereditary Bone Marrow failure
 - Non-immune pathogenesis

Other Immunosuppressive Therapy

- Cell Cept (mycophenolate)
- Campath
- Cyclophosphamide
 - Time of response > 1year
- Eltrombopag (revolade) Off label use

Alternate agents

- Growth factors alone
 - Not advocated
 - Monosomy 7 with prolonged g-csf use reported
- Androgens
 - Ancillary and no longer primary therapy

BMT

- Only curative therapy
- Matched allogeneic
 - Donor available 25%
 - Survival 80 90 % decreasing with adv age
 - -30 35 year cut off
- MUD (matched unrelated donor)
 - -40 % < 20; 30% 21 40 y
 - Older patient IS > BMT

Late Complications of BMT

- Chronic Graft vs Host Disease (GVHD)
- Solid Tumors
- Lung Disease
- Cataracts
- Infertility
- Graft Failure
- etc

Late Complications of IS

MDS

- Variable risk
- Clonal evolution and progression to leukemia
- Complex and monosomy 7 bad
- Trisomy 8 & 13q may respond to IS
- Concern AA vs Hypoplastic MDS

Dr Zhu presentation

MDS

Late Complications of IS

- Paroxysmal Nocturnal Hemoglobinuria
 - May occur at aplastic diagnosis or late as a complication of IS therapy (up to 20%)
 - Disease characterized by Hemolysis, Thrombosis and marrow failure

Paroxysmal Nocturnal Hemoglobinuria

- Paroxysmal episodic
- Misleading "Nocturnal"
- Hemoglobinuria hemoglobin in the urine
- Incidence:
 - unknown, believe that there are 8000 10000 cases in North America & Western Europe
 - More common in southeast Asia
 - Global PNH Registry underway
- M=F
- Median age of diagnosis is 42 years but range is 2-83 years

PNH History

- 1866: William Gull describes first patient nocturnal hemoglobinuria
- First definitive description: Paul Strubing, 1882
 - 29-year old male "voided dark urine only in the morning"
 - Gradual intravascular hemolysis
 - Distinct from march and cold hemoglobinuria
- 1993: Kinoshita discovers mutant gene

PNH

 Disorder characterized by a defect in the GPI Anchor due to an abnormality in the PIG-A gene.

PNH

- Leads to a partial or complete absence of GPIlinked proteins – CD59 (membrane inhibitor of reactive lysis) and CD55 (decay accelerating factor)
- Lack of these proteins leads to the clinical picture allowing excessive sensitization of the rbc to complement mediated hemolysis
- PNH patients deficient in both CD55 & CD59 and to varying degrees in individual patients

WHAT DOES COMPLEMENT HAVE TO DO WITH PNH?

Normal RBCs are protected from complement attack by a shield of terminal complement inhibitors (GPIanchored proteins – most important are CD55 and CD59)

Complement activation

Lack of bound CD55 and CD59 leads to uncontrolled complement activation

Without this protective complement inhibitor shield, **PNH RBCs** are destroyed

GPI = glycosylphosphoinositol.

^{1.} Parker C et al., 2005.; 2. Brodsky R in Hoffman R et al., eds. 2005.; 3. Rother RP et al., 2005.; 4. Socié G et al., 1996.;

^{5.} Hill A et al., 2007.

CHRONIC UNCONTROLLED COMPLEMENT ACTIVATION LEADS TO DEVASTATING CONSEQUENCES

LDH = lactate dehydrogenase.

^{1.} Parker C et al., 2005.; 2. Brodsky R in Hoffman R et al., eds. 2005.; 3. Rother RP et al., 2005.; 4. Socié G et al., 1996.;

^{5.} Hill A et al., 2007.; 6. Lee JW et al., 2010 .; 7. Hill A et al., 2010.; 8. Hillmen P et al., 2010.

Clinical Manifestations Intravascular Hemolysis

Clinical Manifestations Venous Thrombosis

- Correlates with % PNH Granulocytes and Ddimers
- Higher incidence in whites than Asians
- Conventional and unusual sites
- Classic Budd Chiari
- Cerebral Veins
- ? Thrombosis enhanced With complement activation, More micro particle production, more tissue factor all contributors

Thrombosis

- 40% of PNH patients experience clinical TE
- Leading cause of death
 - Accounts for 40–67% of deaths
 - First TE can be fatal
 - Median time to TE was 2.3 years from diagnosis
- First TE increases risk for death 5- to 10-fold

THROMBOTIC EVENTS OCCUR IN A RANGE OF SITES, BOTH USUAL AND UNUSUAL

Arterial TEs were common in a large retrospective analysis

CVA = cerebrovascular accident; PE = pulmonary embolism.

Clinical Manifestations Bone Marrow Failure

- Complex relationship with AA
- PNH stem cell may have a survival advantage expanding post IS rx for AA
- Stem Cells may reduced proliferative ability
- Often complex with rbc hyperplasia and reduced wbc activity

Clinical Manifestations Misc

- Esophageal Spasm
- Impotence
- Abdominal Pain

 ? Related to absence of Nitrous Oxide which is nb for smooth muscle relaxation

Laboratory Tests

- CBC and differential
- Markers of Hemolysis
- LAP Score historical
- Sucrose Lysis Test historical
- Ham's Acidified Serum Test historical
- Flow Cytometry gold standard

Laboratory Tests – Flow Cytometry

Treatment (Hemolysis)

- Consider role of marrow failure in anemia
- Corticosteroids:
 - No trials but may help in acute episodes
 - No role in long term management
- Androgens
 - Possible role in both for acute and long term care
- Iron and folate replacement
- Transfusions for support

Treatment (Hemolysis)

- Complement inhibitor:
 - Monoclonal antibody against complement C5 (eculizumab) in Phase 3 trials
 - Phase 2 trials showed improved control of the signs and symptoms of hemolysis and better quality of life
 - Q14 day regimen
 - Approved in Canada with rigid criteria
 - Cost +++

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA: COMPELLING LONG-TERM CLINICAL BENEFITS IN PNH PATIENTS

Pre-Soliris® from time of diagnosis in 80 patients with PNH¹

 Despite best supportive care, 5-year mortality rate was 35%¹

PNH patients on Soliris® compared with age- and gender-matched controls^{2*}

Hazard ratio = 2.24 (p = 0.013)

*Survival after 10 years is slightly inferior to controls with causes of death related to bone marrow failure and not hemolysis or thrombosis.

Copyright © 2012 American Society of Hematology. Reprinted with permission.

Treatment (Thrombosis)

- Primary Prophylaxis:
 - PNH WBC clones >50% 10 year thrombosis risk
 44% vs 5.8% with smaller clones
 - Surgery, pregnancy
- Treatment of thromboembolic episodes:
 - Need immediate anticoagulation and then oral anticoagulation indefinitely
 - May require thrombolysis

Treatment

- Stem Cell Transplant
 - Patient with life threatening disease
 - Marrow failure
 - -? Children
 - Severe thrombotic events

BONE MARROW TRANSPLANTATION FOR MANAGEMENT OF PNH

Bone marrow transplantation (BMT) is the only curative therapy

- BMT is associated with significant morbidity and mortality
- International Bone Marrow Transplant Registry (IBMTR)
 - 56% 2-year survival (n=48 HLA-identical sibling transplants)
 - 14% 5-year survival of allogeneic transplants
 - 33% chronic graft vs. host disease (1999)
- The European Blood and Marrow Transplant (2008)
 - N=141 (64% HLA-identical sibling donors)
 - 70% 5-year survival rate
 - 32% chronic graft vs. host disease
- Allogeneic BMT is only recommended for PNH patients with lifethreatening cytopenias, or possibly the rare patient with disabling hemolysis or thrombosis not controlled with eculizumab

Future directions

- New complement inhibitors
- Gene Therapy
 - Correction of the PIG-A gene
- Protein Transfer
 - Transfer of GPI-proteins with microvesicles or lipoproteins

PNH

Survival

- Median 10-15 years but many live >25 years
- Death primarily due to thrombotic events or bleeding
- Occasional spontaneous recovery

Canadian PNH Network: Vision and mission

- Our Vision:
- "Patients in Canada must receive world-leading care that extends over case recognition, diagnosis and treatment follow-up."
- Our Mission:
- 1. To maintain the highest standard of clinical practice in the diagnosis and management of PNH
- 2. To provide continuing health education on the evolving management of PNH patients
- 3. To participate in the PNH registry to gain further understanding of the natural history of PNH

Canadian PNH Network: Goals

- To improve outcomes for patients with PNH by raising awareness of the disease, facilitating timely and accurate laboratory diagnosis, and helping to initiate the proper treatment strategy through a variety of research, education, and clinical initiatives. This will be achieved by:
 - Creating a globally recognized expert physician group in Canada
 - Improving patient care and access
 - Deploying nation-wide state-of-the-art flow cytometric assays to detect PNH
 - Advancing disease knowledge
 - Publishing uniquely Canadian data

Canadian PNH Network: Centres of Expertise

Aplastic Anemia & PNH

Questions?