TREATMENT OF APLASTIC ANEMIA AND PAROXYSMAL NOCTURNAL HEMOGLOBINURIA

Dr. M. Sabloff

Director of the Leukemia Program at the Ottawa Hospital September 29th 2012

DISCLOSURES

DISCLOSURES

Consultant for	Celgene, Novartis, Pfizer,
Speaker Bureau	
Grant/Research support	Celgene, Roche, Novartis
Stockholder	
Honoraria	Celgene, Pfizer, Merck, Novartis
Employee	

OBJECTIVES

• To understand the role of the immune system in

- Aplastic Anemia
- Paroxysmal nocturnal hemoglobinuria
- To understand the tools in the treatment of these disease
- To understand how these tools are used and affect these diseases

Normal Bone Marrow

Aplastic Bone Marrow

ASH Image Bank

REVIEW BACKGROUND APLASTIC ANEMIA

• Inherited

- Fanconi's anemia
- Dyskeratosis Congenita
- Diamond-Blackfan Anemia
- Schwachman-Diamond Syndrome
- Congenital neutropenia

• Acquired

- Infections
- Toxins/chemicals
- Medication
- Immune

BASICS OF THE IMMUNE SYSTEM

• All cells made in the bone marrow

- T-cells get "educated" in the thymus
- In aplastic anemia T-cells appear to be directed against early blood cells
 - Initiating event is not clear.

http://www.the-immune-system.org/images/immune-system.jpg

ACQUIRED APLASTIC ANEMIA

- After ruling out other etiologies
 - Usually immune
 - 2/1 000 000
 - Then decide on severity
 - Mild, severe, very severe

GRADING OF AA

• Mild

• Hypocellular marrow

• Severe

- Bone-marrow cellularity < 25% and
 - neutrophil count < 0 \cdot 5x 109/L
 - platelet count < $20 \times 109/L$
 - and absolute reticulocyte count 60x109/L.

• Very severe

• neutrophil count <0 ·2x109/L

MILD AA

- Monitor for symptoms
- May not need any therapy
- Transfuse
- Look for any exacerbating factors
 - Vitamins
 - Bleeding
 - Infections
- Specific therapy
 - Immune- suppression

SEVERE AND VERY SEVERE AA

- Always requires therapy
- Exacerbating factors
- Associated disorders
 - i.e. PNH, MDS,
- Specific therapy
 - Stem cell transplant
 - Immune suppression

STEM CELL TRANSPLANT FOR AA

- Replace the blood and immune cells with a donor's
- Curative in large proportion from matched donor
- Limited to age <40
- Complicated by graft vs host disease 20-40%

Gupta V. Haematologica 2010;95(12);2

IMMUNE-SUPPRESSION: ANTITHYMOCYTE GLOBULIN (ATG)

- Anti-immune system product
- Created in either horse of rabbits.
- Pieces of thymus from donors undergoing cardiac surgery
- Injected into rabbits
- Serum is collected and prepared for use

Mohty M Leukemia (2007) 21;1387

- Many targets identified
- Mostly T-cells

How ATG IMPAIRS THE IMMUNE SYSTEM

- 1. T-cell depletion
- 2. B-cell depletion
- 3. Interfere with interaction between immune cells
- 4. Interfere with function of immune cells
- 5. Induction of certain immune cells

Mohty M. Leukemia (2007) 21;1387

IMMUNE-SUPPRESSION: ANTITHYMOCYTE GLOBULIN (ATG)

Side effects

- Infusion-related
 - Fevers, rigors, rash, low blood pressure
- Serum sickness
 - 1-2 weeks after infusion
 - Fever, rash, sore joints and muscles, ...
- Decrease in blood counts temporarily

IMMUNE-SUPPRESSION: CYCLOSPORIN

- Blocks signals in Tlymphocytes
- Dampening or interfering with their immune response.

Marsh J Blood (1999) 93(7);2191

Probability of Response to

p=0.02

18

12

6

CSA+ATG (n=54), 77%

24

CSA (n=61), 53%

30

36

therapy

100

Probability of Response

90

40 30

20

10

0

IMMUNE-SUPPRESSION: CYCLOSPORIN

Side effects

- High blood pressure
- Kidney failure
- Hair growth
- Muscle aches
- • •

BMT vs. IST

Locasciulli A. Haematologica 2007 92:11

OTHER FORMS OF IMMUNE SUPPRESSION: **ALEMTUZUMAB**

Scheinberg P. Blood (2012) 119(2);345

50

60

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA

- Frequency: 1-2/million
- Median age: 40
- Median survival 10-15 years

PNH - SOME HISTORY

• 1882 – first description by Dr. Paul Strubing

- 29-year-old with fatigue, abdominal pain, and severe episodes of dark urine at night (nocturnal paroxysms of hemoglobinuria)
- 1925 term paroxysmal nocturnal hemoglobinuria introduced
- 1938 Ham's test developed
 - Dr. Thomas Hale Ham and Co. discovered that the red cells were more fragile in an acidic environment
- 1954 alternate pathway of complement activation described

PNH - SOME HISTORY

• 1967 – Dr. William Dameshek

- proposed that PNH, aplastic anemia, and acute leukemia were related
- bone marrow injury might be initiating event
- 1980s GPI anchors were missing
 - 2 GPI proteins CD55 and CD59 regulators of the complement system

• 2004 Dr. Hillmen and Co. published

• Eculizumab demonstrated effective

PNH - ETIOLOGY

Red cells have many proteins on its surface Many are linked through GPI anchor

Brodsky RA. (2008) Ann Intern Med 148;587

PNH - ETIOLOGY

- Mutated PIGA gene
- PIGA essential for synthesis of a membrane anchor of many proteins (GPI-anchor).

PNH- ETIOLOGY

• CD 55 and CD59 central proteins affected.

• Results in uncontrolled complement activation

CONSEQUENCES OF PNH

- Hemolysis
 - Breakdown of red cells
- Muscle spasms
 - Abdominal pain, esophageal pain, erectile dysfunction
 - Nitric oxide depletion
- Thrombosis
 - Blood clotting
 - Unusual locations
 - Leading cause of death
- Bone marrow failure
 - No or dysfunctional precursors in the bone marrow (AA or MDS)
 - Low blood counts leading to transfusion dependence

CLASSIFICATION

Category	Rate of intravascular hemolysis ^b	Bone marrow	Flow cytometry analysis	Benefit from eculizumab
Classic	Florid (markedly abnormal LDH often with episodic macroscopic hemoglobinuria)	Hypocellular with areas of erythroid hyperplasia and normal or near-normal morphology ^c	Large (50–100%) population of GPI-AP-deficient PMNs ^e	Yes
PNH in the setting of another bone marrow failure syndrome ^d	Mild (often with minimal abnormalities of biochemical markers of hemolysis)	Evidence of a concomitant bone marrow failure syndrome ^d	Moderate (25–50%) population of GPI-AP- deficient PMNs ^e	Typically no, but some patients in this subcategory have clinically significant hemolysis and may benefit
Subclinical	No clinical or biochemical evidence of intravascular hemolysis	Evidence of a concomitant bone marrow failure syndrome ^d	Small (<25%) ^f population of GPI-AP-deficient PMNs ^e	No

Parker C. Blood (2005) 106;3699

TREATMENT APPROACH

- Symptomatic treatment
- Specific treatment

Symptomatic treatment

o low blood counts

- Transfusions
- Folic acid

• thrombosis

• Anticoagulation

• hemolysis

- Steroids
- Androgens
- Eculizumab

SPECIFIC THERAPIES

- Hemolysis
 - Eculizumab
- Bone marrow failure
 - Immune suppression
 - Stem cell transplant

MARROW FAILURE IMMUNE THERAPY

- Similar approach to AA
- Higher responders to immune therapy than those without PNH clone

BONE MARROW TRANSPLANT

Peffault de Latour R. Haematologica (2012) Epub

OS for different indications

OS after thrombosis

OS for aplastic anemia

Survival

Eculizumab

- Antibody targeted to C5
- Reduces rate of hemolysis and transfusions
- Cautions
 - Headaches
 - Neisseria infections
 - Effective for hemolysis (classic PNH)
 - Expensive
 - Therapy is lifelong

Eculizumab

- Based on work over a decade prior
- 2006 TRIUMPH study
 - Randomized study
 - Reduced hemolysis
 - Reduced transfusion requirements
 - Improved fatigue
- 2008 SHEPHERD study
 - Evaluated long-term safety and efficacy
 - Not randomized
 - Less stringent entry criteria

Hillmen P. (2006) NEJM 355;12 Brodsky RA. (2008) Blood 11;1840

TRIUMPH – results - LD

TRIUMPH – results – time to need for first transfusion.

TRIUMPH – results - FATIGUE

THROMBOSIS

• One of the major problems in PNH

- 40% incidence
- Rate reduced significantly on eculizumab
- 5.6 compared to 0.8 events/100 patient years

LONG-TERM SURVIVAL

Kelly RJ Blood (2011) 117;6786

CONCLUSIONS

• AA and PNH

- Treated based on understanding the immunological basis of the disease
- Attack different aspects of the immune system
- Treatment are improving with time
- More effective treatment are competing with stem cell transplants

TREATMENT BASED ON CLASSIFICATION

• Subclinical PNH

- MDS or AA
- PNH clone <1%
- No specific PNH treatment
- Appear to respond better to immunosuppressive therapy.

TREATMENT BASED ON CLASSIFICATION

• PNH in the setting of another BM failure syndrome

- Again no specific PNH therapy
- Treatment directed at underlying marrow failure syndrome (i.e. AA or MDS)
 - Allogeneic stem cell transplant
 - Immunosuppressive therapy.

TREATMENT BASED ON CLASSIFICATION

• Classic PNH

- Large clone (>50%)
 - Hemolysis, elevated LD, hemoglobinuria
 - Lethargy, malaise
 - Treated with eculizumab
 - +/- anticoagulation
 - Treatment of any other causes for cytopenias (i.e. vitamins, bleeding, infections, other medications...)
 - +/- danazol
 - +/- steroids
 - +/- splenectomy

To do

- Understand alemtuzumab study
- History of AA treatment
- NEJM editorial
- Organize