Myelodysplastic Syndromes

Karen WL Yee, MD, FRCPC

Division of Medical Oncology & Hematology Princess Margaret Hospital

Disclosures			
Research Support/PI	Astex, Celgene, Chroma Therapeutics, EntreMed, Roche		
Employee	N/A		
Consultant	Merck		
Stockholder	N/A		
Speakers Bureau	N/A		
Honoraria	Merck, Novartis		
Advisory Board	Celgene, Merck, Novartis		

Overview

- Background
- Risk-Based Treatment Strategies:
 - Lower (Low & Int-1) Risk
 - Erythropoietin Stimulating Agents (ESAs)
 - Lenalidomide
 - (Iron Chelation)
 - Higher (Int-2 & High) Risk
 - Hypomethylating Agents
 - (Allogeneic Stem Cell Transplantation)

MDS Age-Specific Incidence Rates (2001-2004)

Statistics Canada 2006 NCI-SEER 2006 National Vital Stats 2006

Prognostic Indicators in MDS:

French-American-British (FAB) Classification (1992) World Health Organization (WHO) Classification (2008)

International Prognostic Scoring System (IPSS; 1997) IPSS-Revised (IPSS-R; 2012)

FAB Classification (1982)	WHO Classification (2008)
Refractory anemia (RA)	Refractory cytopenia with unilineage dysplasia (RCUD) <i>(RA; RT; RN)</i> Refractory cytopenia with multilineage dysplasia (RCMD)
Refractory anemia with ring sideroblasts (RARS)	Refractory anemia with ring sideroblasts (RARS)
Refractory anemia with excess blasts (RAEB)	Refractory anemia with excess blasts (RAEB-1) RAEB-2
Refractory anemia with excess blasts (RAEB-T)* Chronic myelomonocytic leukemia (CMML)*	MDS-unclassifiable (MDS-U) MDS with isolated del(5q)

WHO Classification: Survival & AML Evolution

International Prognostic Scoring System (IPSS) Risk Classification

	Score Value				
Prognostic Variable	0	0.5	1.0	1.5	2.0
BM blasts (%)	<5	5-10	_	11-20	21-30
Karyotype*	Good	Intermediate	Poor		
Cytopenias	0/1	2/3			

Scores for risk groups are as follows: Low, 0; INT-1, 0.5-1.0; INT-2, 1.5-2.0; and High, \geq 2.5.

* Good, normal, -Y, del(5q), del(20q); Poor, complex (\geq 3 abnormalities) or chromosome 7 anomalies; Intermediate, other abnormalities.

Survival & Risk of AML Evolution by IPSS Score

	IPSS Risk Group				
	Low	Int-1	Int-2	High	
Score	0	0.5-1.0	1.5–2.0	≥ 2.5	
Lifetime AML Evolution	19%	30%	33%	45%	
Median Years to AML	9.4	3.3	1.1	0.2	
Median Survival (years)	5.7	3.5	1.2	0.4	

[†] Time to 25% of patients evolving to AML

Causes of Death in MDS by IPSS Risk Group

IPSS Risk Group	No. (%)	Died (%)	Died with Leukemia (%)	Died without Leukemia (%)
Low	235 (31)	113 (48)	22 (19)	91 (81)
Int-1	295 (39)	181 (61)	55 (30)	126 (70)
Int-2	171 (22)	147 (86)	49 (33)	98 (67)
High	58 (8)	51 (88)	23 (45)	28 (55)
Total	759	492 (65)	149 (30)	343 (70)

IPSS-R Classification

Prognostic _	Score Value						
Variable	0	0.5	1	1.5	2	3	4
Cytogenetics*	V good	-	Good		Int	Poor	V poor
BM blasts (%)	<u><</u> 2%	-	>2–<5%		5–10%	>10%	-
Hb level (g/dL)	≥10	-	8-<10	<8	-	-	-
ANC (x10 ⁹ /L)	≥0.8	≤0.8	-		-	-	-
Platelets (x10 ⁹ / L)	≥100	50-<100	<50		-	-	-

* Schanz et al. J Clin Oncol 2012

Scores for risk groups are as follows: Very Low, <1.5; Low, >1.5-3; Intermediate, >3-4.5; High, >4.5-6; and Very High, >6

Survival & Risk of AML Evolution by IPSS-R Score

IPSS-R Risk Group

	Very Low	Low	Intermediate	High	Very High
Score	<u><</u> 1.5	>1.5-3	>3-4.5	>4.5-6	>6
Median Years to AML ⁺	NR	10.8	3.2	1.4	0.7
Median Survival (years)	8.8	5.3	3.0	1.7	0.7

⁺ Time to 25% of patients evolving to AML

Greenberg et al. Blood 2012

Goals of Therapy in MDS

- Based on age, functional status, other medical conditions, and IPSS risk group
- Decrease disease-related complications (improve blood counts)
- Improve quality of life
- Change the natural history of disease (increase survival; delay leukemic transformation; potential for cure)

Cheson et al. Blood 2000

Cheson et al. Blood 2006

Erythropoietin Stimulating Agents (ESAs)

Decision Model: EPO +/- G-CSF

Variable	Value	Score	Value	Score
Transfusion need*	< 2 U/month	0	\geq 2 U/month	1
Serum-Epo*	< 500 U/liter	0	\geq 500 U/liter	1

* Pre-treatment evaluation Predicted response rate: Total score 0 = 74%, 1 = 23%, 2 = 7% Predicted value of model $P < 0.001^{-14}$ Patients with score 2 do not benefit from treatment with Epo + G-CSF

	Response
EPO <u>+</u> G-CSF	35-40%

Hellstrom-Lindberg et al. Hematology 2005

Effect of EPO on Disease Progression & Overall Survival in Lower-Risk MDS

Reference, y	Progression to AML	OS
Jädersten (GFM) 2008	No difference	OS _{5y} <mark>40%</mark> v 20% ^a
Park (Nordic/Pavia) 2008	No difference*	OS _{5y} <mark>64%</mark> v 39% ^b
Greenberg 2009	No difference	No difference ^c

^a P = 0.002; ^b P < 0.001; ^c Improved OS in erythroid responders v nonresponders (median, 5.5y v 2.3y; P = 0.004)

Jädersten et al. J Clin Oncol 2008; Park et al. Blood 2008; Greenberg et al. Blood 2009

New Drug Approval Timelines

Lenalidomide in patients with lower-risk MDS & del(5q) abnormalities

Cytogenetics --

Cytogenetic analysis reveals loss of a portion of the long arm of chromosome 5.

Chromosomal Abnormalities

De novo MDS

23%

List et al. Hematology 2004

MDS-003: Phase II Lenalidomide in del(5q) MDS

Transfusion-Independence

Complete Remission

Median time to response 4.6 wks; Median max. Hgb 134 g/L Median F/U >26 mos; Median response duration is not reached (> 104 wks) Response adversely affected by baseline ↓plt & > 4U PRBCs/8 wks; Cytogenetic response correlated with transfusion-independence

99 (67%)

Lenalidomide

(n=148)

38 (36%)

Duration of Major Erythroid Response Isolated del(5q) v Int/Complex [N=97]

§Symbols are censored patients who remain TI at time of data cut-off or at time of study discontinuation.

MDS-004: Phase III Lenalidomide in del(5q) MDS

Responders (after 16 wks of treatment) continued treatment until erythroid relapse or disease progression; Crossover permitted for nonrepsonders (after 16 wks of treatment) on placebo and lenalidomide 5 mg/d arms Fenaux et al. ASH 2009

MDS-004: Response & Tolerance

	Placebo (N=51)	LEN 5 mg (N=46)	LEN 10 mg (N=41)
RBC Transfusion Independence (TI <u>></u> 26 wks)	3 (6%)	19 (41%)*	23 (56%)* 🗲
Hematologic AEs <u>></u> grade 3 Neutropenia Thrombocytopenia	15% 2%	74% 33%	75% 41%
Dose Reduction	0	52%	58%
Discontinuation due to AEs	5%	16%	9%

Long-Term Outcomes

- Median F/U 36 mos
- 22% (31/138) patients progressed to AML (median time to progression not reached)
- 48% (66/138) patients have died
 - Median OS 3.68 y
 - OS_{3y} 56%
- Achievement of RBC-TI for ≥ 26 weeks with lenalidomide was associated with ↓ risk of AML progression & death (P = 0.021)

Predictors of Response to Lenalidomide in del(5q) MDS Patients

	MDS-003 Study		
Variable	Odds Ratio	Р	
Decline in platelets (≥ 50% v < 50%)	4.68	0.008	
Decline in ANC (<mark>≥ 75%</mark> <i>v</i> < 75%) [†]	4.56	0.056	

⁺ In patients with normal baseline ANC; ANC – absolute neutrophil count

MDS-002: Phase II Lenalidomide in <mark>nondel(5q)</mark> MDS

Lenalidomide (n=214)

Transfusion-Independence

56 (26%)

Complete Remission (n=105) 1 (1%)

*as defined by IWG criteria 2000

Median time to beginning of transfusion-independence 4.8 wks (range, 1-39 wks); Median max Hgb 116 g/ L

Median F/U 19 mos (n=56 transfusion-independent responders);

Median response duration 10.2 mos [20 (36%) pts had response duration > 1 y]

Of the 56 patients who achieved TI: 45 (80%) good karyotype; 10 (18%) intermediate; 0 poor

Raza et al. Blood 2007

Comparison of Responses to Lenalidomide: del(5q) vs nondel(5q) MDS

	MDS-003: Del(5q) MDS (n=148)	MDS-002: Nondel(5q) MDS (n=214)
Transfusion Response Transfusion-Independence (TI) > 50% reduction in transfusion	112 (76%) 99 (67%) 13 (9%)	93 (43%) 56 (26%) 37 (17%)
Median time to response	4.6 wks	4.8 wks
Median response duration (TI)	26 mos	10.2 mos
Grade 3/4 neutropenia Grade 3/4 thrombocytopenia	81 (55%) 65 (44%)	54 (25%) 43 (20%)

MDS-005: Phase III Lenalidomide in nondel(5q) MDS

expression signature that become transfusion independent

Recommendations for Lenalidomide

- Low/Int-1 risk red cell transfusion-dependent *de novo* MDS with interstitial deletion involving 5q31
- Recent data suggest administering lenalidomide 10 mg as a starting dose, with dose reductions or discontinuations if needed
- Role in Low/Int-1 risk red cell transfusion-dependent *de* novo MDS without interstitial deletion involving 5q31 is currently being evaluated

The role of hypomethylating agents in patients with MDS

Hypomethylating Agents: (a) Azacitidine (b) Decitabine

AZA-001: Phase III Azacitidine in Higherrisk MDS

Treatment continued until unacceptable toxicity or AML transformation or disease progression Fenaux et al. Lancet Oncol 2009

AZA-001: Response Rates

	Azacitidine (n=179)	CCR (n=179)
Overall Response (CR+PR, %)	29	12
CR	17	8
PR	12	4

Azacitidine was administered for a median of 9 cycles; 81% achieved a first response by 6 cycles & 90% achieved a first response by 9 cycles

Overall Survival: Azacitidine vs CCR ITT Population

Overall Survival with Azacitidine by Best Response (IWG 2000)

List et al. J Clin Oncol 2008

Azacitidine Prolongs Time to Development of AML or Death

	Azacitidine (n=179)	CCR (n=179)	P value
Time to AML or Death (mos)	13	7.6	0.003
Time to AML (mos)	26.1	12.4	0.004

Azacitidine & Red Blood Cell Transfusion Independence

Azacitidine: Side Effects

- Cytopenias low neutrophil counts, low platelets, & anemia
- Nausea & vomiting
- Injection site reactions
- Constipation (?due to anti-nausea medication)

Azacitidine: Incidence of Cytopenias

	Cycles 1-2	Cycles 3-4	Cycles 5-6	Cycles 7-12	Cycles 13-24
Thrombocytopenia	54.3%	5.4%	4.6%	5.6%	8.9%
Neutropenia	50.3%	10.9%	1.5%	6.5%	3.6%
Anemia	32.6%	7.5%	6.9%	7.5%	7.1%

32% lower annual risk of infections requiring IV antimicrobials compared to CCR

(p = 0.0032)

Scoring System Predicting Survival (with Azacitidine)

	Score Value			
	0	1	2	
ECOG status	0/1	<u>></u> 2	-	
Presence of circulating blasts	Ν	Y	-	
RBC transfusion dependency (Units/8 wks)	0-3	<u>></u> 4	-	
IPSS cytogenetic risk*	Good	Intermediate	Poor	

Scores for risk groups are as follows: Low (0), Intermediate (1-3), and High (4-5)

* Good (normal, -Y, del(5q), or del(20q)); Poor (complex (> 3 abnormalities) or chr(7) anomalies); Intermediate (other abnormalities) *Itzykson et al. Blood* 2010

Survival (with Azacitidine) by Risk Group

	Risk Group		
	Low	Intermediate	High
Score	0	1-3	4-5
Median Survival (months)*	Not reached	15	6.1

* *P* < 0.0001

Phase III Decitabine in MDS

Phase III Azacitidine v Decitabine Higher-risk MDS

Recommendations for Hypomethylating Agents

- Azacitidine in patients with Int-2/High-risk MDS who are not transplant candidates
- Benefit of hypomethylating agents in patients with Low/ Int-1 risk MDS is unclear
- Phase III trial is currently underway to evaluate response rates in patients receiving azacitidine vs decitabine. However, <u>not designed</u> to assess differences, if any, in OS
- Role of hypomethylating agents as a bridge to allogeneic stem cell transplant is being evaluated

Phase I/II Azacitidine + Lenalidomide in Higher-risk MDS

	N=36
Overall Response (CR+HI)	26 (72%)
Complete Response (CR)	16 (44%)
Hematologic Improvement (HI)	10 (28%)
Median Time to Initial Response (mos)	3.7 (1.4-7.4)
Median CR Duration (mos)	17+ (3-39+)
Median Overall Survival (mos)	13.6 (3-55)

Phase I Azacitidine + Vorinostat in MDS & AML

N=28 (21 evaluabl	
Overall Response (CR+CRi+HI)	18 (86%)
Complete Response (CR)	9 (43%)
CR with incomplete platelet recovery (CRi)	2 (10%)
Hematologic Improvement (HI)	7 (33%)
Median Time to Initial Response	2 cycles

MDS (n=20); AML (n=8)

Mean no. cycles administered 5 (range 1-17)

Phase II Azacitidine +/- Lenalidomide or Vorinostat in Higher-risk MDS or CMML

R

Α

Ν

D

Ο

Μ

Ζ

Ε

N=240

- RAEB-1/2 or CMML-1/2
- Int-2 or High MDS (Int-1 if >5% blasts)
- No prior hypomethylating agents, HDAC inhibitors (vorinostat), or lenalidomide

Primary Outcomes:

- Response rate (CR, PR, HI)
- Overall survival
- Relapse-free survival
- Toxicity
- Association of cytogenetics with outcome

Azacitidine 75 mg/m2/d x 7/28d* + Lenalidomide 10 mg/d x 21/28d (n=80)

Azacitidine 75 mg/m2/d x 7/28d* (n=80)

Azacitidine 75 mg/m2/d x 7/28d* + Vorinostat 300 mg bid D3-9 q28d (n=80)

Treatment continued until unacceptable toxicity or disease progression

Phase I Oral Azacitidine in MDS/CMML: Response Rates

	Treatment Schedule			_	
	300 mg		200 mg		Total
	Daily for 14d	Daily for 21d	Twice daily for 14d	Twice daily for 21d	(n=15)
	(n=6)	(n=3)	(n=3)	(n=3)	
Overall Response (CR + any HI + marrow CR)	4 (67%)	3 (100%)	3 (100%)	0	10 (67%)
Complete Response (CR)	0	2 (67%)	0	0	2 (13%)
Hematologic Improvement (HI)	2/5 (40%)	3 (100%)	1 (33%)	0	6/14 (43%)
Transfusion Independence	3/5 (60%)	2/2 (100%)	2/3 (67%)	0	7/10 (70%)
RBC	1/3 (33%)	1/1 (100%)	1/1 (100%)		3/5 (60%)
Platelets	2/2 (100%)	1/1 (100%)	1/2 (50%)		4/5 (80%)
Marrow CR	0	1/1 (100%)	1/2 (50%)	0	2/4 (50%)

77% Low/Int-1 risk MDS; No prior azacitidine or decitabine

Garcia-Manero et al. Blood 2010

AZA-MDS-003: Phase III Oral Azacitidine in Low-risk MDS

Treatment options for patients with MDS who fail to respond to, lose response to, or are intolerant of hypomethylating agents

Overall Survival According to Salvage Therapy

^a Survival was measured from the date of AZA failure; ^b Epigenetic drugs, immunomodulatory drugs, nonregistered compounds; ^c Induction chemotherapy, low dose chemotherapy (cytarabine, 6-mercaptopurine); ^d Induction chemotherapy

Prebet et al. ASH 2010

Overall Survival: Rigosertib (ON 01910.Na) in MDS

	FAB/WHO Classification (N=60)			
	RCMD	RAEB-1	RAEB-2	RAEB-t
	(n=9)	(n=17)	(n-21)	(n=13)
Median OS (mos)ª	24.5	20.5	8.8	5.2

	IPSS Risk Group (N=51 RAEB-1, RAEB-2, RAEB-t)			
	Intermediate-1 (n=10)	Intermediate-2 (n=14)	High (n=27)	
Median OS (mos) ^b	Not reached	9.2	7	

	Bone Marrow (BM) Blast Response (N=38 RAEB-1, RAEB-2, RAEB-t <u>Refractory to or Relapsing after Azacitidine/Decitabine</u>)				
	≥ 50% Decrease in Blasts (n=13)	Progressive Disease (n=3)	Not Assessed (n=10)		
Median OS (mos) ^c	11	12.2	3.8	2.5	

Raza et al. Blood 2011

Phase III Rigosertib (ON 01910.Na) in MDS Patients Failing Hypomethylating Agents

- N=270 (2:1 randomization in favor of rigosertib)
- RAEB-1/2, RAEB-t, or CMML
- Loss/lack of response to, or intolerance of, or disease progression on azacitidine or decitabine
- Anemia, neutropenia, or thrombocytopenia

Primary Outcome:

Overall survival

Closing Comments

- Lenalidomide yields durable erythroid responses [i.e. RBC transfusion independency in patients with del(5q) MDS]
- Currently, azacitidine is the only hypomethylating agent that has shown an improved OS in patients with Int-2/High-risk MDS
- Need to improve outcomes for patients, especially those failing disease modifying treatments