

Iron Overload

Dick Wells

Outline

- A functional definition of iron overload
- Iron toxicity from atoms to organs
- Treatment of iron overload

Am I overloaded yet?

A functional definition of iron overload

Body Iron Distribution

There is no physiologic mechanism to remove excess iron

The Iron Balance

Transfusion therapy results in iron overload

- Normal iron influx through gut is 1–2 mg/day
- 1 blood unit contains 200-250 mg iron
- Iron overload can occur after 10–20 transfusions

Free Iron: The Essence of Iron Overload

Free iron in our cells

Summary Iron Balance

- There is no mechanism for excreting excess iron
- Iron normally is as
 - Haemoglobin an
 - Transferrin (plasm
 - Ferritin (intracellu

What problems are caused by free iron?

- "Free" iron is rare
- When iron stores are high, free iron appears in the plasma and can get into cells

Iron supports dangerous radicals

Iron Toxicity: From Atoms to Organs

Iron and Free Radicals

■ Cell metabolism produces **hydrogen peroxide** (H_2O_2) as a biproduct

- H₂O₂ is not itself very toxic
 - Reactive oxygen intermediate (ROI)
- **Free iron** reacts with H₂O₂ to form highly toxic <u>free radicals</u>
 - Reactive oxygen species (ROS)

H₂O₂ Reactions

Fenton Reaction

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^{\bullet} + OH^{-}$$

 $Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + OOH^{\bullet} + H^{+}$

Cellular Effects of Free Iron

Iron Overload Morbidity and Mortality

Iron Overload Effect of iron chelation

Comparison of organ dysfunction in thalassaemia major and sickle cell disease

Characteristic	Thalassaemia major	Sickle cell disease	p value	
Age	18.4 ± 2.1	2.1 14.8 ± 1.0		
Duration of transfusion	12 years	6 years		
Serum ferritin (μg/L)	2,122 ± 289	2,916 ± 233 0.04		
Liver iron (mg Fe/g dry wt)	14.8 ± 2.2	14.3 ± 1.4	NS	
Transfusions (n/year)	12.2 ± 1.8	6.0 ± 0.6	0.002	
Cardiac disease	20%	0%	0.002	
Gonadal failure	33%	0%	< 0.001	
Growth delay	27%	9%	NS	
Hypothyroidism	7%	0%	NS	
Viral hepatitis	33%	2% < 0		
Fibrosis	81%	29%	0.02	

Despite similar Fe measures, SCD patients have fewer end-organ complications

Factors

- 1. Duration of transfusion
- 2. TM vs. SCD

Why should this be?

ROI-reactive oxygen intermediates

ROS-reactive oxygen species

Does iron overload contribute to mortality in MDS?

MDS Classification: Causes of death in MDS

The goals of therapy are different in low-risk and high risk MDS

The heart in MDS

Rates of heart disease in US medicare patients

"MDS cardiomyopathy": chronic anaemia + iron overload + the aged myocardium

Goldberg et al., ASH 2008

Cardiac iron in patients with MDS

	N	Cardiac iron	Units transfused	Serum ferritin (µg/L)	Chelated
Jensen et al. 2003	12	9	44–254	1,740–8,715	0
Chacko et al			ER: The		6
Konen et al.	o ok	viou	<u>s relatio</u>	onship	7
Di Tucci et al	etw	/een	cardia	c iron	2
C	and	hear	t proble	ems in	
Pascal et al.		<u></u>	NDS		54

Should iron chelation be given in MDS?

Ferroscepticism

Data?

Myelodysplasia paranoia: iron as the new radon. Leuk Res. 2009

■ Tefferi A, Stone RM. Iron chelation therapy in myelodysplastic syndrome—Cui bono? Leukemia. 2009

Iron chelation and survival in MDS

Fox Blood 2009; 114 (abstract 1747)

Leitch (Clin Leuk Res 2008)

- 178 pt
- OS in <u>ICT</u> >160 mo
- OS in non-ICT = 40 mo
- p<0.03
- □ **Rose** (ASH 2007)
- 170 pt
- OS 115 vs. 51 mo
- p< 0.0001
- **Fox** (ASH 2009)
 - 186 pt (matched pairs)
 - OS in ICT = 75 mo
 - OS in non-ICT = 49 mo
 - P=0.002

Available online at www.sciencedirect.com

Leukemia Research 32 (2008) 1338-1353

www.elsevier.com/locate/leukres

Invited editorial

Iron overload in myelodysplastic syndromes: A Canadian consensus guideline

Richard A. Wells ^{a,*}, Brian Leber ^b, Rena Buckstein ^a, Jeffrey H. Lipton ^c, Wanda Hasegawa ^d, Kuljit Grewal ^e, Karen Yee ^c, Harold J. Olney ^f, Loree Larratt ^g, Linda Vickars ^h, Alan Tinmouth ⁱ

- Lower-risk MDS if life exp > 1y
- Higher-risk MDS if BMT candidate
- Either desferal or exjade as first line
- Target ferritin < 1000 ng/mL</p>

Direct and Indirect Measurement of Iron

Iron and Haematopoiesis in MDS

Analysis of trial data to study haematological responses in the MDS patients in EPIC (N=341)

Iron and AML in MDS

Sanz G, et al. Blood. 2008;112:[abstract 640].

How could IOL promote development of AML?

- Fe causes DNA damage in vitro
- Fe accelerates development of AML in mouse model

Summary Iron Toxicity

Conclusions

- Iron is both essential and toxic -- balance is maintained by an intricate network of proteins
- Chronic RBC transfusion overwhelms this network, resulting in the presence of "free iron", which causes cell and organ damage via generation of free radicals
- Fe toxicity leaves different footprints in TM, SCD, and MDS
- Chelation therapy can prevent chronic Fe toxicity but must be monitored by indirect (ferritin) or direct (LIC) means

Any questions?